File size: 6,889 Bytes
af48e90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import os
from sklearn.preprocessing import OneHotEncoder  # 独热编码
import numpy as np
import pickle as pk


# 载入数据
def load_batch(file):  # 读取一个批次的数据
    with open(file, 'rb') as f:
        data_dict = pk.load(f, encoding='bytes')
        images = data_dict[b'data']
        labels = data_dict[b'labels']
        images = images.reshape(10000, 3072)
        labels = np.array(labels)
        return (images / 255), labels


def load_data(data_dir):
    images_train = []
    labels_train = []
    for i in range(5):
        file = os.path.join(data_dir, 'data_batch_%d' % (i + 1))
        print('加载文件:', file)
        # 按批次读取训练集数据并拼接到图像和标签列表后,直到读入所有批次数据
        images_batch, labels_batch = load_batch(file)
        images_train.append(images_batch)
        labels_train.append(labels_batch)
        # 将多个批次的数组统一为一个数组
        x_train = np.concatenate(images_train)
        t_train = np.concatenate(labels_train)
        del images_batch, labels_batch

    # 加载测试集图像和标签
    x_test, t_test = load_batch(os.path.join(data_dir, 'test_batch'))
    return x_train, t_train, x_test, t_test


def sigmoid(x):
    return 1 / (1 + np.exp(-x))


def sigmoid_grad(x):
    return (1.0 - sigmoid(x)) * sigmoid(x)


def softmax(x):
    if x.ndim == 2:
        x = x.T
        x = x - np.max(x, axis=0)
        y = np.exp(x) / np.sum(np.exp(x), axis=0)
        return y.T

    x = x - np.max(x)  # 溢出对策
    return np.exp(x) / np.sum(np.exp(x))


class neuralNetwork:

    def __init__(self, numNeuronLayers, numNeurons_perLayer, learningRate):
        self.numNeurons_perLayer = numNeurons_perLayer
        self.numNeuronLayers = numNeuronLayers
        self.learningRate = learningRate
        self.weight = []
        self.bias = []
        for i in range(numNeuronLayers):
            self.weight.append(
                learningRate * np.random.randn(self.numNeurons_perLayer[i], self.numNeurons_perLayer[i + 1]))
            self.bias.append(np.zeros(self.numNeurons_perLayer[i + 1]))

    def predict(self, x):
        z = x
        # 走一遍前向传播得到输出
        for i in range(self.numNeuronLayers - 1):
            a = np.dot(z, self.weight[i]) + self.bias[i]
            z = sigmoid(a)
        an = np.dot(z, self.weight[self.numNeuronLayers - 1]) + self.bias[self.numNeuronLayers - 1]
        y = softmax(an)
        return y

    def gradient(self, x, t):
        z = []
        a = []
        z.append(x)
        # 走一遍前向传播得到输出
        for i in range(self.numNeuronLayers):
            a.append(np.dot(z[i], self.weight[i]) + self.bias[i])
            z.append(sigmoid(a[i]))
        y = softmax(a[self.numNeuronLayers - 1])
        num = x.shape[0]
        dy = (y - t) / num
        dz = []
        da = []
        dz.append(dy)
        for i in range(self.numNeuronLayers - 1):
            da.append(np.dot(dz[i], self.weight[self.numNeuronLayers - i - 1].T))
            dz.append(sigmoid_grad(a[self.numNeuronLayers - i - 2]) * da[i])

        for i in range(self.numNeuronLayers):
            self.weight[i] -= self.learningRate * np.dot(z[i].T, dz[self.numNeuronLayers - i - 1])
            self.bias[i] -= self.learningRate * np.sum(dz[self.numNeuronLayers - i - 1], axis=0)

    def loss(self, x, t):
        y = self.predict(x)
        t = t.argmax(axis=1)
        num = y.shape[0]
        s = y[np.arange(num), t]
        return -np.sum(np.log(s)) / num

    def accuracy(self, x, t):
        y = self.predict(x)
        p = np.argmax(y, axis=1)
        q = np.argmax(t, axis=1)
        acc = np.sum(p == q) / len(y)
        return acc


def kNN(x_train, x_test, t_train, k):
    px = list()
    for i in range(len(x_test)):
        px.append([])
        for j in range(10):
            px[i].append(0)
    for i in range(len(x_test)):
        dis = getODistance(x_test[i], x_train)
        index = np.argsort(dis)
        count = list()
        r = np.sort(dis)[k - 1]
        for j in range(len(t_train[0])):
            count.append(0)
        for j in range(k):
            for w in range(10):
                if t_train[index[j]][w] == 1:
                    count[w] = count[w] + 1
        for j in range(10):
            px[i][j] = count[j]
    return px


def getODistance(sample, train):
    a = np.tile(sample, [1000, 1])
    a = a - train
    a = np.square(a)
    a = a.sum(axis=1)
    dis = np.sqrt(a)
    dis = dis.T
    dis = dis.tolist()
    return dis[0]


def runNetwork():
    numNeuronLayers = 3
    numNeurons_perLayer = [3072, 50, 20, 10]
    learningRate = 0.05
    epoch = 50000
    batch_size = 100
    train_size = x_train.shape[0]  # 50000

    net = neuralNetwork(numNeuronLayers, numNeurons_perLayer, learningRate)
    for i in range(epoch):
        batch_mask = np.random.choice(train_size, batch_size)  # 从0到50000 随机选100个数
        x_batch = x_train[batch_mask]
        t_batch = t_train[batch_mask]
        net.gradient(x_batch, t_batch)
    y = net.predict(x_test[0:1000, 0:3072])
    p = np.argmax(y, axis=1)
    q = np.argmax(t_test[0:1000, 0:3072], axis=1)
    acc = np.sum(p == q) / len(y)
    print("神经网络正确率为:", acc)
    return p


def runKnn(x_train, x_test):
    x_train = np.mat(x_train)
    x_test = np.mat(x_test)
    px = kNN(x_train[0:1000, 0:3072], x_test[0:1000, 0:3072], t_train[0:1000, 0:10], 7)
    p = np.argmax(px, axis=1)
    q = np.argmax(t_test[0:1000, 0:3072], axis=1)
    acc = np.sum(p == q) / 1000
    print("knn正确率为:", acc)
    return p


from sklearn import svm


def runSvm():
    clf = svm.SVC(probability=True)
    t = np.argmax(t_train[0:1000, 0:3072], axis=1)
    clf.fit(x_train[0:1000, 0:3072], t)
    p = clf.predict(x_test[0:1000, 0:3072])
    q = np.argmax(t_test[0:1000, 0:3072], axis=1)
    acc = np.sum(p == q) / 1000
    print("svm正确率为:", acc)
    return p


data_dir = 'cifar-10-batches-py'
x_train, t_train, x_test, t_test = load_data(data_dir)
encoder = OneHotEncoder(sparse=False)
one_format = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9]]
encoder.fit(one_format)
t_train = t_train.reshape(-1, 1)  # 数组化为一维包含一个元素的二维数组,-1代表二维的数量自适应
t_train = encoder.transform(t_train)
t_test = t_test.reshape(-1, 1)
t_test = encoder.transform(t_test)

p1 = runNetwork()
p2 = runSvm()
p3 = runKnn(x_train, x_test)

p1 = p1.reshape(-1, 1)  # 数组化为一维包含一个元素的二维数组,-1代表二维的数量自适应
p1 = encoder.transform(p1)
p2 = p2.reshape(-1, 1)
p2 = encoder.transform(p2)
p3 = p3.reshape(-1, 1)
p3 = encoder.transform(p3)

vote = p1+p2+p3
p = np.argmax(vote, axis=1)
q = np.argmax(t_test[0:1000, 0:3072], axis=1)
acc = np.sum(p == q) / 1000
print("最终正确率为", acc)