--- library_name: transformers license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetune-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.36967418546365916 - name: Recall type: recall value: 0.3705365153418267 - name: F1 type: f1 value: 0.37010484810466887 - name: Accuracy type: accuracy value: 0.7865868016718667 --- # bert-finetune-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0722 - Precision: 0.3697 - Recall: 0.3705 - F1: 0.3701 - Accuracy: 0.7866 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0501 | 1.0 | 878 | 0.0776 | 0.3631 | 0.3639 | 0.3635 | 0.7850 | | 0.0292 | 2.0 | 1756 | 0.0760 | 0.3690 | 0.3661 | 0.3675 | 0.7865 | | 0.0144 | 3.0 | 2634 | 0.0722 | 0.3697 | 0.3705 | 0.3701 | 0.7866 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu118 - Datasets 3.1.0 - Tokenizers 0.20.3