--- base_model: VuongQuoc/checkpoints_30_9_microsoft_deberta_V1.0_384 tags: - generated_from_trainer metrics: - accuracy model-index: - name: checkpoints_30_9_microsoft_deberta_V1.0_384 results: [] --- # checkpoints_30_9_microsoft_deberta_V1.0_384 This model is a fine-tuned version of [VuongQuoc/checkpoints_30_9_microsoft_deberta_V1.0_384](https://huggingface.co/VuongQuoc/checkpoints_30_9_microsoft_deberta_V1.0_384) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5746 - Map@3: 0.7625 - Accuracy: 0.655 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-07 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - training_steps: 1200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Map@3 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| | 1.6081 | 0.05 | 100 | 1.6083 | 0.7092 | 0.585 | | 1.6107 | 0.11 | 200 | 1.6078 | 0.7375 | 0.625 | | 1.6077 | 0.16 | 300 | 1.6070 | 0.7517 | 0.65 | | 1.6097 | 0.21 | 400 | 1.6055 | 0.7542 | 0.645 | | 1.6083 | 0.27 | 500 | 1.6030 | 0.7650 | 0.65 | | 1.6006 | 0.32 | 600 | 1.5989 | 0.7733 | 0.665 | | 1.5932 | 0.37 | 700 | 1.5927 | 0.7742 | 0.66 | | 1.5881 | 0.43 | 800 | 1.5858 | 0.7742 | 0.665 | | 1.578 | 0.48 | 900 | 1.5800 | 0.7708 | 0.66 | | 1.5717 | 0.53 | 1000 | 1.5763 | 0.7658 | 0.655 | | 1.5677 | 0.59 | 1100 | 1.5748 | 0.7625 | 0.655 | | 1.5666 | 0.64 | 1200 | 1.5746 | 0.7625 | 0.655 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.0 - Datasets 2.9.0 - Tokenizers 0.13.3