Upload 3 files
Browse files- app.py +63 -0
- random_forest_model (2).joblib +3 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import joblib
|
3 |
+
import pandas as pd
|
4 |
+
|
5 |
+
# Load the model and encoders
|
6 |
+
model = joblib.load('random_forest_model.joblib')
|
7 |
+
venue_mapping = {
|
8 |
+
"MCG": 0,
|
9 |
+
"Eden Gardens": 1,
|
10 |
+
"Lords": 2
|
11 |
+
}
|
12 |
+
|
13 |
+
match_type_mapping = {
|
14 |
+
"ODI": 0,
|
15 |
+
"T20": 1,
|
16 |
+
"Test": 2
|
17 |
+
}
|
18 |
+
|
19 |
+
team_mapping = {
|
20 |
+
"India": 0,
|
21 |
+
"Australia": 1,
|
22 |
+
"England": 2,
|
23 |
+
"Pakistan": 3
|
24 |
+
}
|
25 |
+
|
26 |
+
def predict_score(venue, match_type, team_batting, team_bowling):
|
27 |
+
|
28 |
+
# Use the mappings to convert categorical values to numbers
|
29 |
+
venue_encoded = venue_mapping[venue]
|
30 |
+
match_type_encoded = match_type_mapping[match_type]
|
31 |
+
team_batting_encoded = team_mapping[team_batting]
|
32 |
+
team_bowling_encoded = team_mapping[team_bowling]
|
33 |
+
|
34 |
+
# Prepare the input data for prediction
|
35 |
+
new_match = pd.DataFrame({
|
36 |
+
'Venue': [venue_encoded],
|
37 |
+
'Match_Type': [match_type_encoded],
|
38 |
+
'Team_Batting': [team_batting_encoded],
|
39 |
+
'Team_Bowling': [team_bowling_encoded]
|
40 |
+
})
|
41 |
+
|
42 |
+
# Make prediction
|
43 |
+
predicted_score = model.predict(new_match)
|
44 |
+
return round(predicted_score[0])
|
45 |
+
|
46 |
+
|
47 |
+
# Create Gradio interface
|
48 |
+
interface = gr.Interface(
|
49 |
+
fn=predict_score,
|
50 |
+
inputs=[
|
51 |
+
gr.Dropdown(['MCG', 'Eden Gardens', 'Wankhede'], label='Venue'),
|
52 |
+
gr.Dropdown(['ODI', 'T20'], label='Match Type'),
|
53 |
+
gr.Dropdown(['India', 'Australia', 'England'], label='Team Batting'),
|
54 |
+
gr.Dropdown(['Australia', 'India', 'England'], label='Team Bowling')
|
55 |
+
],
|
56 |
+
outputs=gr.Textbox(label="Predicted Score"),
|
57 |
+
title="Cricket Match Score Predictor",
|
58 |
+
description="Enter match details to predict the final score."
|
59 |
+
)
|
60 |
+
|
61 |
+
# Launch the interface
|
62 |
+
if __name__ == "__main__":
|
63 |
+
interface.launch()
|
random_forest_model (2).joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:88251fed428a09f471a79da8191caf9595d752b087a11e084f7ce8715570a498
|
3 |
+
size 3121681
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
pandas
|
3 |
+
scikit-learn
|
4 |
+
joblib
|
5 |
+
numpy
|