|
import torch |
|
from torch import nn |
|
from torch.utils.checkpoint import checkpoint |
|
|
|
__all__ = ['iresnet18', 'iresnet34', 'iresnet50', 'iresnet100', 'iresnet200'] |
|
using_ckpt = False |
|
|
|
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): |
|
"""3x3 convolution with padding""" |
|
return nn.Conv2d(in_planes, |
|
out_planes, |
|
kernel_size=3, |
|
stride=stride, |
|
padding=dilation, |
|
groups=groups, |
|
bias=False, |
|
dilation=dilation) |
|
|
|
|
|
def conv1x1(in_planes, out_planes, stride=1): |
|
"""1x1 convolution""" |
|
return nn.Conv2d(in_planes, |
|
out_planes, |
|
kernel_size=1, |
|
stride=stride, |
|
bias=False) |
|
|
|
|
|
class IBasicBlock(nn.Module): |
|
expansion = 1 |
|
def __init__(self, inplanes, planes, stride=1, downsample=None, |
|
groups=1, base_width=64, dilation=1): |
|
super(IBasicBlock, self).__init__() |
|
if groups != 1 or base_width != 64: |
|
raise ValueError('BasicBlock only supports groups=1 and base_width=64') |
|
if dilation > 1: |
|
raise NotImplementedError("Dilation > 1 not supported in BasicBlock") |
|
self.bn1 = nn.BatchNorm2d(inplanes, eps=1e-05,) |
|
self.conv1 = conv3x3(inplanes, planes) |
|
self.bn2 = nn.BatchNorm2d(planes, eps=1e-05,) |
|
self.prelu = nn.PReLU(planes) |
|
self.conv2 = conv3x3(planes, planes, stride) |
|
self.bn3 = nn.BatchNorm2d(planes, eps=1e-05,) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward_impl(self, x): |
|
identity = x |
|
out = self.bn1(x) |
|
out = self.conv1(out) |
|
out = self.bn2(out) |
|
out = self.prelu(out) |
|
out = self.conv2(out) |
|
out = self.bn3(out) |
|
if self.downsample is not None: |
|
identity = self.downsample(x) |
|
out += identity |
|
return out |
|
|
|
def forward(self, x): |
|
if self.training and using_ckpt: |
|
return checkpoint(self.forward_impl, x) |
|
else: |
|
return self.forward_impl(x) |
|
|
|
|
|
class IResNet(nn.Module): |
|
fc_scale = 7 * 7 |
|
def __init__(self, |
|
block, layers, dropout=0, num_features=512, zero_init_residual=False, |
|
groups=1, width_per_group=64, replace_stride_with_dilation=None, fp16=False): |
|
super(IResNet, self).__init__() |
|
self.extra_gflops = 0.0 |
|
self.fp16 = fp16 |
|
self.inplanes = 64 |
|
self.dilation = 1 |
|
if replace_stride_with_dilation is None: |
|
replace_stride_with_dilation = [False, False, False] |
|
if len(replace_stride_with_dilation) != 3: |
|
raise ValueError("replace_stride_with_dilation should be None " |
|
"or a 3-element tuple, got {}".format(replace_stride_with_dilation)) |
|
self.groups = groups |
|
self.base_width = width_per_group |
|
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(self.inplanes, eps=1e-05) |
|
self.prelu = nn.PReLU(self.inplanes) |
|
self.layer1 = self._make_layer(block, 64, layers[0], stride=2) |
|
self.layer2 = self._make_layer(block, |
|
128, |
|
layers[1], |
|
stride=2, |
|
dilate=replace_stride_with_dilation[0]) |
|
self.layer3 = self._make_layer(block, |
|
256, |
|
layers[2], |
|
stride=2, |
|
dilate=replace_stride_with_dilation[1]) |
|
self.layer4 = self._make_layer(block, |
|
512, |
|
layers[3], |
|
stride=2, |
|
dilate=replace_stride_with_dilation[2]) |
|
self.bn2 = nn.BatchNorm2d(512 * block.expansion, eps=1e-05,) |
|
self.dropout = nn.Dropout(p=dropout, inplace=True) |
|
self.fc = nn.Linear(512 * block.expansion * self.fc_scale, num_features) |
|
self.features = nn.BatchNorm1d(num_features, eps=1e-05) |
|
nn.init.constant_(self.features.weight, 1.0) |
|
self.features.weight.requires_grad = False |
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.normal_(m.weight, 0, 0.1) |
|
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): |
|
nn.init.constant_(m.weight, 1) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
if zero_init_residual: |
|
for m in self.modules(): |
|
if isinstance(m, IBasicBlock): |
|
nn.init.constant_(m.bn2.weight, 0) |
|
|
|
def _make_layer(self, block, planes, blocks, stride=1, dilate=False): |
|
downsample = None |
|
previous_dilation = self.dilation |
|
if dilate: |
|
self.dilation *= stride |
|
stride = 1 |
|
if stride != 1 or self.inplanes != planes * block.expansion: |
|
downsample = nn.Sequential( |
|
conv1x1(self.inplanes, planes * block.expansion, stride), |
|
nn.BatchNorm2d(planes * block.expansion, eps=1e-05, ), |
|
) |
|
layers = [] |
|
layers.append( |
|
block(self.inplanes, planes, stride, downsample, self.groups, |
|
self.base_width, previous_dilation)) |
|
self.inplanes = planes * block.expansion |
|
for _ in range(1, blocks): |
|
layers.append( |
|
block(self.inplanes, |
|
planes, |
|
groups=self.groups, |
|
base_width=self.base_width, |
|
dilation=self.dilation)) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
with torch.cuda.amp.autocast(self.fp16): |
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.prelu(x) |
|
x = self.layer1(x) |
|
x = self.layer2(x) |
|
x = self.layer3(x) |
|
x = self.layer4(x) |
|
x = self.bn2(x) |
|
x = torch.flatten(x, 1) |
|
x = self.dropout(x) |
|
x = self.fc(x.float() if self.fp16 else x) |
|
x = self.features(x) |
|
return x |
|
|
|
|
|
def _iresnet(arch, block, layers, pretrained, progress, **kwargs): |
|
model = IResNet(block, layers, **kwargs) |
|
if pretrained: |
|
raise ValueError() |
|
return model |
|
|
|
|
|
def iresnet18(pretrained=False, progress=True, **kwargs): |
|
return _iresnet('iresnet18', IBasicBlock, [2, 2, 2, 2], pretrained, |
|
progress, **kwargs) |
|
|
|
|
|
def iresnet34(pretrained=False, progress=True, **kwargs): |
|
return _iresnet('iresnet34', IBasicBlock, [3, 4, 6, 3], pretrained, |
|
progress, **kwargs) |
|
|
|
|
|
def iresnet50(pretrained=False, progress=True, **kwargs): |
|
return _iresnet('iresnet50', IBasicBlock, [3, 4, 14, 3], pretrained, |
|
progress, **kwargs) |
|
|
|
|
|
def iresnet100(pretrained=False, progress=True, **kwargs): |
|
return _iresnet('iresnet100', IBasicBlock, [3, 13, 30, 3], pretrained, |
|
progress, **kwargs) |
|
|
|
|
|
def iresnet200(pretrained=False, progress=True, **kwargs): |
|
return _iresnet('iresnet200', IBasicBlock, [6, 26, 60, 6], pretrained, |
|
progress, **kwargs) |
|
|
|
def get_model(name, **kwargs): |
|
|
|
if name == "r18": |
|
return iresnet18(False, **kwargs) |
|
elif name == "r34": |
|
return iresnet34(False, **kwargs) |
|
elif name == "r50": |
|
return iresnet50(False, **kwargs) |
|
elif name == "r100": |
|
return iresnet100(False, **kwargs) |
|
elif name == "r200": |
|
return iresnet200(False, **kwargs) |
|
else: |
|
raise ValueError |