File size: 4,537 Bytes
5de72e6 c742cd3 5de72e6 c742cd3 5de72e6 afb4a71 5de72e6 c742cd3 5de72e6 c742cd3 5de72e6 c742cd3 5de72e6 c742cd3 5de72e6 45ea9bd dc83e9e d7c921a dc83e9e 5de72e6 afb4a71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
---
license: mit
base_model: DeepMount00/Mistral-Ita-7b
tags:
- axolotl
- generated_from_trainer
- psycology
- companion
model-index:
- name: Samantha-ita-v0.1
results: []
datasets:
- WasamiKirua/samantha-ita
- WasamiKirua/psycology-dataset-ita
language:
- it
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: DeepMount00/Mistral-Ita-7b
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: /workspace/datasets/samantha-ita-sharegpt.jsonl
type: sharegpt
field: conversations
- path: /workspace/datasets/psycology-dataset-gpt-ita.jsonl
type: sharegpt
field: conversations
chat_template: chatml
hub_model_id: Samantha-ita-v0.1
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./out
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false
wandb_project: samantha-mistral7b
wandb_entity:
wandb_watch:
wandb_name: Samantha-ita-v0.1
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.000006
# 0.000006 OK better curve
# 0.0005 OK
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "<|im_end|>"
unk_token: "<unk>"
tokens:
- "<|im_start|>"
- "<|im_end|>"
```
</details><br>
# Samantha-ita-v0.1
<img src="https://i.postimg.cc/YC6Tf65H/00005-2244133494.png" alt="cover" border="0" width="1024px">
This model is a fine-tuned version of [DeepMount00/Mistral-Ita-7b](https://huggingface.co/DeepMount00/Mistral-Ita-7b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7069
## Model description
Samantha is a fine-tuned Italian version based on Eric Hartford's Samantha.
For this, I utilized the pre-trained Mistral 7B version.
The model performs excellently! Please take a look at the datasets used.
## Intended uses & limitations
Sure, here's the corrected and improved version:
Samantha is a proficient companion who understands and speaks Italian fluently.
She has undergone training on various topics. In addition to the original Samantha
dataset translated with GPT-4, I have also incorporated a psychology conversations dataset
to further enrich Samantha's knowledge in the field of psychology."
## Chat Template
```
<|im_start|>system
YOUR PROMPT<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
```
## Quantized Versions:
GGUF availabile here: https://huggingface.co/WasamiKirua/Samantha-ita-mistral-v0.1-GGUF
## DPO Version
DPO trained version available here: https://huggingface.co/WasamiKirua/Samantha-ita-mistral-v0.1-DPO
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.9261 | 0.01 | 1 | 1.8998 |
| 0.8902 | 0.25 | 28 | 0.8267 |
| 0.8422 | 0.5 | 56 | 0.7604 |
| 0.8338 | 0.75 | 84 | 0.7299 |
| 0.8397 | 1.0 | 112 | 0.7136 |
| 0.6859 | 1.22 | 140 | 0.7131 |
| 0.6707 | 1.47 | 168 | 0.7082 |
| 0.7041 | 1.72 | 196 | 0.7069 |
| 0.6936 | 1.97 | 224 | 0.7069 |
### Framework versions
- Transformers 4.40.0.dev0
- Pytorch 2.2.0
- Datasets 2.15.0
- Tokenizers 0.15.0 |