File size: 3,341 Bytes
1004f4a 5cdba00 1004f4a 5cdba00 1004f4a 5cdba00 1004f4a 5cdba00 1004f4a 5cdba00 1004f4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilhubert-finetuned-gtzan
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2658
- Accuracy: 0.8
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.1071 | 1.0 | 112 | 2.1453 | 0.33 |
| 1.6165 | 2.0 | 225 | 1.6129 | 0.59 |
| 1.2842 | 3.0 | 337 | 1.2084 | 0.68 |
| 0.9805 | 4.0 | 450 | 0.8842 | 0.74 |
| 0.5216 | 5.0 | 562 | 0.7350 | 0.78 |
| 0.5017 | 6.0 | 675 | 0.8196 | 0.77 |
| 0.1998 | 7.0 | 787 | 0.6709 | 0.8 |
| 0.3662 | 8.0 | 900 | 0.8483 | 0.78 |
| 0.2711 | 9.0 | 1012 | 0.8567 | 0.81 |
| 0.0183 | 10.0 | 1125 | 0.8994 | 0.82 |
| 0.0299 | 11.0 | 1237 | 1.2142 | 0.8 |
| 0.0064 | 12.0 | 1350 | 1.0208 | 0.81 |
| 0.004 | 13.0 | 1462 | 1.0619 | 0.81 |
| 0.0031 | 14.0 | 1575 | 1.1454 | 0.79 |
| 0.0028 | 15.0 | 1687 | 1.1010 | 0.81 |
| 0.0023 | 16.0 | 1800 | 1.0595 | 0.8 |
| 0.0017 | 17.0 | 1912 | 1.1340 | 0.8 |
| 0.0015 | 18.0 | 2025 | 1.1760 | 0.81 |
| 0.0014 | 19.0 | 2137 | 1.1361 | 0.81 |
| 0.0012 | 20.0 | 2250 | 1.2138 | 0.81 |
| 0.0011 | 21.0 | 2362 | 1.1366 | 0.81 |
| 0.0012 | 22.0 | 2475 | 1.1662 | 0.8 |
| 0.0011 | 23.0 | 2587 | 1.1491 | 0.8 |
| 0.0009 | 24.0 | 2700 | 1.1287 | 0.81 |
| 0.0009 | 25.0 | 2812 | 1.2027 | 0.81 |
| 0.0009 | 26.0 | 2925 | 1.1740 | 0.81 |
| 0.0009 | 27.0 | 3037 | 1.2011 | 0.81 |
| 0.0009 | 28.0 | 3150 | 1.2523 | 0.8 |
| 0.0008 | 29.0 | 3262 | 1.2494 | 0.81 |
| 0.0007 | 29.87 | 3360 | 1.2658 | 0.8 |
### Framework versions
- Transformers 4.29.2
- Pytorch 1.13.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|