File size: 3,206 Bytes
876ba12 eef969c 876ba12 eef969c 876ba12 1eb8bf9 876ba12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
---
language:
- da
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_13_0
metrics:
- wer
model-index:
- name: Whisper Small Da - WasuratS
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 13
type: mozilla-foundation/common_voice_13_0
config: da
split: test
args: da
metrics:
- name: Wer
type: wer
value: 23.39882224190943
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Da - WasuratS
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 13 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6393
- Wer Ortho: 29.0926
- Wer: 23.3988
## Model description
[openai/whisper-small](https://huggingface.co/openai/whisper-small)
## Training and evaluation data
[mozilla-foundation/common_voice_13_0](https://huggingface.co/datasets/mozilla-foundation/common_voice_13_0)
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 4000
- mixed_precision_training: Native AMP
``` %python
from transformers import Seq2SeqTrainingArguments
training_args = Seq2SeqTrainingArguments(
output_dir="./whisper-small-da",
per_device_train_batch_size=16,
gradient_accumulation_steps=1,
learning_rate=1e-5,
lr_scheduler_type="linear",
warmup_steps=50,
max_steps=4000,
gradient_checkpointing=True,
fp16=True,
fp16_full_eval=True,
evaluation_strategy="steps",
per_device_eval_batch_size=16,
predict_with_generate=True,
generation_max_length=225,
save_steps=500,
eval_steps=500,
logging_steps=25,
report_to=["tensorboard"],
load_best_model_at_end=True,
metric_for_best_model="wer",
greater_is_better=False,
push_to_hub=True,
)
```
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:|
| 0.218 | 1.61 | 500 | 0.4724 | 30.2496 | 24.7069 |
| 0.0628 | 3.22 | 1000 | 0.4825 | 28.8946 | 23.3154 |
| 0.0289 | 4.82 | 1500 | 0.5311 | 29.3376 | 23.4666 |
| 0.0078 | 6.43 | 2000 | 0.5740 | 29.4627 | 23.6542 |
| 0.0032 | 8.04 | 2500 | 0.6070 | 29.0613 | 23.2790 |
| 0.0025 | 9.65 | 3000 | 0.6274 | 29.1187 | 23.4770 |
| 0.0012 | 11.25 | 3500 | 0.6335 | 29.0978 | 23.3623 |
| 0.0011 | 12.86 | 4000 | 0.6393 | 29.0926 | 23.3988 |
### Framework versions
- Transformers 4.29.2
- Pytorch 1.13.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|