File size: 2,272 Bytes
88f1f25
d4b9b51
 
 
 
 
 
 
0cd0b1b
d4b9b51
 
 
 
9fc24e5
0cd0b1b
d4b9b51
 
 
 
 
 
 
0cd0b1b
9fc24e5
0cd0b1b
88f1f25
 
d4b9b51
 
88f1f25
d4b9b51
88f1f25
d4b9b51
 
9fc24e5
 
88f1f25
d4b9b51
88f1f25
d4b9b51
88f1f25
d4b9b51
88f1f25
d4b9b51
88f1f25
d4b9b51
88f1f25
d4b9b51
88f1f25
d4b9b51
88f1f25
d4b9b51
88f1f25
d4b9b51
 
 
 
 
 
 
 
 
 
9fc24e5
d4b9b51
88f1f25
d4b9b51
88f1f25
d4b9b51
 
9fc24e5
 
 
 
 
 
 
 
88f1f25
 
d4b9b51
88f1f25
d4b9b51
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice_16_0
metrics:
- wer
base_model: openai/whisper-large-v3
model-index:
- name: whisper-large-v3-ja
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: common_voice_16_0
      type: common_voice_16_0
      config: ja
      split: validation
      args: ja
    metrics:
    - type: wer
      value: 14.696501005043272
      name: Wer
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-large-v3-ja

This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the common_voice_16_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4210
- Wer: 14.6965

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer     |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.1542        | 1.69  | 500  | 0.2712          | 15.6149 |
| 0.0351        | 3.39  | 1000 | 0.3074          | 16.1866 |
| 0.0081        | 5.08  | 1500 | 0.3475          | 15.3802 |
| 0.0049        | 6.78  | 2000 | 0.3427          | 15.1804 |
| 0.001         | 8.47  | 2500 | 0.3851          | 14.7302 |
| 0.0004        | 10.17 | 3000 | 0.4109          | 14.7254 |
| 0.0003        | 11.86 | 3500 | 0.4168          | 14.6953 |
| 0.0003        | 13.56 | 4000 | 0.4210          | 14.6965 |


### Framework versions

- Transformers 4.37.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2