File size: 2,272 Bytes
88f1f25 d4b9b51 0cd0b1b d4b9b51 9fc24e5 0cd0b1b d4b9b51 0cd0b1b 9fc24e5 0cd0b1b 88f1f25 d4b9b51 88f1f25 d4b9b51 88f1f25 d4b9b51 9fc24e5 88f1f25 d4b9b51 88f1f25 d4b9b51 88f1f25 d4b9b51 88f1f25 d4b9b51 88f1f25 d4b9b51 88f1f25 d4b9b51 88f1f25 d4b9b51 88f1f25 d4b9b51 88f1f25 d4b9b51 9fc24e5 d4b9b51 88f1f25 d4b9b51 88f1f25 d4b9b51 9fc24e5 88f1f25 d4b9b51 88f1f25 d4b9b51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice_16_0
metrics:
- wer
base_model: openai/whisper-large-v3
model-index:
- name: whisper-large-v3-ja
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: common_voice_16_0
type: common_voice_16_0
config: ja
split: validation
args: ja
metrics:
- type: wer
value: 14.696501005043272
name: Wer
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-large-v3-ja
This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the common_voice_16_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4210
- Wer: 14.6965
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.1542 | 1.69 | 500 | 0.2712 | 15.6149 |
| 0.0351 | 3.39 | 1000 | 0.3074 | 16.1866 |
| 0.0081 | 5.08 | 1500 | 0.3475 | 15.3802 |
| 0.0049 | 6.78 | 2000 | 0.3427 | 15.1804 |
| 0.001 | 8.47 | 2500 | 0.3851 | 14.7302 |
| 0.0004 | 10.17 | 3000 | 0.4109 | 14.7254 |
| 0.0003 | 11.86 | 3500 | 0.4168 | 14.6953 |
| 0.0003 | 13.56 | 4000 | 0.4210 | 14.6965 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2
|