Waterboy96 commited on
Commit
d95813f
1 Parent(s): 49d2c62

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -1.49 +/- 0.35
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd11c10a5226ef7ceca5330afc0f9d30aa457a1699749eedc794cc405e1b1179
3
+ size 108011
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fde99b27430>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7fde99b1e960>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1675486038035279772,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA1gfhPgHMXz0IyMk+1gfhPgHMXz0IyMk+1gfhPgHMXz0IyMk+1gfhPgHMXz0IyMk+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA3E06v9dPyj8Ehr+/bL+Iv/0cOL2TuKs/VFXMv1EV0r7CMrY/xMusv/NAjT8nyDm9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADWB+E+AcxfPQjIyT6S3cW7vZAVPFwdr7zWB+E+AcxfPQjIyT6S3cW7vZAVPFwdr7zWB+E+AcxfPQjIyT6S3cW7vZAVPFwdr7zWB+E+AcxfPQjIyT6S3cW7vZAVPFwdr7yUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.4395129 0.05463791 0.39410424]\n [0.4395129 0.05463791 0.39410424]\n [0.4395129 0.05463791 0.39410424]\n [0.4395129 0.05463791 0.39410424]]",
60
+ "desired_goal": "[[-0.72775054 1.5805615 -1.4962773 ]\n [-1.0683417 -0.04494952 1.3415703 ]\n [-1.596354 -0.41031888 1.423424 ]\n [-1.3499684 1.1035446 -0.0453569 ]]",
61
+ "observation": "[[ 0.4395129 0.05463791 0.39410424 -0.00603838 0.00912875 -0.0213763 ]\n [ 0.4395129 0.05463791 0.39410424 -0.00603838 0.00912875 -0.0213763 ]\n [ 0.4395129 0.05463791 0.39410424 -0.00603838 0.00912875 -0.0213763 ]\n [ 0.4395129 0.05463791 0.39410424 -0.00603838 0.00912875 -0.0213763 ]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAIDEZvp8jqz3Zlf48AEIIO/6DC75lBpc+sDsNPoClKby48hE8FYWFPT3fVb0t9gI+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.14960146 0.08356404 0.03107731]\n [ 0.00207913 -0.1362457 0.29497066]\n [ 0.137923 -0.0103544 0.00890797]\n [ 0.06519524 -0.05221485 0.12789221]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIavmBqzxBAMCUhpRSlIwBbJRLMowBdJRHQKWE8mfGuLd1fZQoaAZoCWgPQwjvj/eqlUkDwJSGlFKUaBVLMmgWR0ClhK2PLgXNdX2UKGgGaAloD0MIMH+FzJWB/L+UhpRSlGgVSzJoFkdApYRouyu6mXV9lChoBmgJaA9DCCUH7GryNALAlIaUUpRoFUsyaBZHQKWEJ3aBZp11fZQoaAZoCWgPQwiIodXJGQoEwJSGlFKUaBVLMmgWR0ClhgZ93KSxdX2UKGgGaAloD0MIkUjb+BO1BMCUhpRSlGgVSzJoFkdApYXBvegte3V9lChoBmgJaA9DCM/ZAkLrQQDAlIaUUpRoFUsyaBZHQKWFfM0xdpt1fZQoaAZoCWgPQwiYofFEECcDwJSGlFKUaBVLMmgWR0ClhTu58Sf2dX2UKGgGaAloD0MIxHk4gem0/r+UhpRSlGgVSzJoFkdApYcZn6Eal3V9lChoBmgJaA9DCIz34/bL5/e/lIaUUpRoFUsyaBZHQKWG1PUKArh1fZQoaAZoCWgPQwiDFhIwuvz8v5SGlFKUaBVLMmgWR0ClhpBGYrrgdX2UKGgGaAloD0MINgTHZdxU/r+UhpRSlGgVSzJoFkdApYZP6InBtXV9lChoBmgJaA9DCOJ30y07hADAlIaUUpRoFUsyaBZHQKWIGUMXrMV1fZQoaAZoCWgPQwjH1F3ZBeMAwJSGlFKUaBVLMmgWR0Clh9Rr8BMjdX2UKGgGaAloD0MIGyycpPnjBMCUhpRSlGgVSzJoFkdApYePiT+vQnV9lChoBmgJaA9DCMCSq1j85vy/lIaUUpRoFUsyaBZHQKWHTmOEM9d1fZQoaAZoCWgPQwjedqG5TqMGwJSGlFKUaBVLMmgWR0CliSgH/tIDdX2UKGgGaAloD0MIT+j1J/G58r+UhpRSlGgVSzJoFkdApYjjJr+HanV9lChoBmgJaA9DCAqhgy7hkPu/lIaUUpRoFUsyaBZHQKWInmKZUkx1fZQoaAZoCWgPQwjikuNO6eD+v5SGlFKUaBVLMmgWR0CliF1w5vLpdX2UKGgGaAloD0MI5lsf1hs1/L+UhpRSlGgVSzJoFkdApYpNIwudw3V9lChoBmgJaA9DCBLaci7Flf+/lIaUUpRoFUsyaBZHQKWKCMdcSoR1fZQoaAZoCWgPQwgMOiF00OX0v5SGlFKUaBVLMmgWR0ClicQ0GeMAdX2UKGgGaAloD0MIdZDXg0kx+7+UhpRSlGgVSzJoFkdApYmDMTviLnV9lChoBmgJaA9DCOoihbLwFQbAlIaUUpRoFUsyaBZHQKWLbTP0I1N1fZQoaAZoCWgPQwgJibSNP1EBwJSGlFKUaBVLMmgWR0CliyhxYJVsdX2UKGgGaAloD0MIPx2PGahM+L+UhpRSlGgVSzJoFkdApYrj0pVjqnV9lChoBmgJaA9DCGCt2jUhrf+/lIaUUpRoFUsyaBZHQKWKoryUcGV1fZQoaAZoCWgPQwhcOXtntNXxv5SGlFKUaBVLMmgWR0CljImFSKm9dX2UKGgGaAloD0MIEtpyLsWV9L+UhpRSlGgVSzJoFkdApYxE3ZPEbnV9lChoBmgJaA9DCMBcixagLfy/lIaUUpRoFUsyaBZHQKWMAE+xGDt1fZQoaAZoCWgPQwia0Y+GUyb4v5SGlFKUaBVLMmgWR0Cli79RJmNBdX2UKGgGaAloD0MIdCUC1T+ICsCUhpRSlGgVSzJoFkdApY2rAeq7y3V9lChoBmgJaA9DCHf3AN2XM/q/lIaUUpRoFUsyaBZHQKWNZjI7vG91fZQoaAZoCWgPQwhN845TdGQAwJSGlFKUaBVLMmgWR0CljSGkFfRedX2UKGgGaAloD0MIzHucacL2+L+UhpRSlGgVSzJoFkdApYzg0bcXWXV9lChoBmgJaA9DCEvK3ef46Pm/lIaUUpRoFUsyaBZHQKWOzqdpZfV1fZQoaAZoCWgPQwi+TX/2I0X3v5SGlFKUaBVLMmgWR0Cljop9JBgNdX2UKGgGaAloD0MI4qsdxTkq9b+UhpRSlGgVSzJoFkdApY5F7OVxCXV9lChoBmgJaA9DCPfHe9XKBPy/lIaUUpRoFUsyaBZHQKWOBSThYNl1fZQoaAZoCWgPQwg+r3jqkcb7v5SGlFKUaBVLMmgWR0Clj+OzyBkJdX2UKGgGaAloD0MIJsPxfAaU8b+UhpRSlGgVSzJoFkdApY+fFJg9eXV9lChoBmgJaA9DCFUYWwhykPi/lIaUUpRoFUsyaBZHQKWPWm+Cbtt1fZQoaAZoCWgPQwgD7KNTV374v5SGlFKUaBVLMmgWR0CljxlfReC1dX2UKGgGaAloD0MIRMTNqWQgAMCUhpRSlGgVSzJoFkdApZD3ezlcQnV9lChoBmgJaA9DCPxTqkTZW/a/lIaUUpRoFUsyaBZHQKWQstCiRGN1fZQoaAZoCWgPQwj5Tsx6MdT3v5SGlFKUaBVLMmgWR0ClkG3yy2QXdX2UKGgGaAloD0MI1HyVfOzu8r+UhpRSlGgVSzJoFkdApZAs9KVY6nV9lChoBmgJaA9DCORlTSzwFQLAlIaUUpRoFUsyaBZHQKWSF+8XenB1fZQoaAZoCWgPQwhkz57L1GT0v5SGlFKUaBVLMmgWR0ClkdMuWa+fdX2UKGgGaAloD0MIZvm6DP+p/L+UhpRSlGgVSzJoFkdApZGOlO45LnV9lChoBmgJaA9DCNoEGJY/X+6/lIaUUpRoFUsyaBZHQKWRTZkCmuV1fZQoaAZoCWgPQwiEglK0cu/9v5SGlFKUaBVLMmgWR0ClkyhybQTmdX2UKGgGaAloD0MIaVGf5A4b+L+UhpRSlGgVSzJoFkdApZLjk2gnMXV9lChoBmgJaA9DCNTzbiwozADAlIaUUpRoFUsyaBZHQKWSnqxC6Yp1fZQoaAZoCWgPQwjaVN0jm0sFwJSGlFKUaBVLMmgWR0Clkl3Ehq0udX2UKGgGaAloD0MI8X7cfvlk+L+UhpRSlGgVSzJoFkdApZRC7NB4U3V9lChoBmgJaA9DCDkNUYU/A/y/lIaUUpRoFUsyaBZHQKWT/pGnXNF1fZQoaAZoCWgPQwg6dlCJ61j3v5SGlFKUaBVLMmgWR0Clk7m3nZCfdX2UKGgGaAloD0MIJa5jXHHx+r+UhpRSlGgVSzJoFkdApZN4soUi6nV9lChoBmgJaA9DCGjqdYvAWPe/lIaUUpRoFUsyaBZHQKWVXc32mHh1fZQoaAZoCWgPQwhGtB1Td2UBwJSGlFKUaBVLMmgWR0CllRlWfbsXdX2UKGgGaAloD0MIj3HFxVE5+L+UhpRSlGgVSzJoFkdApZTUxdpqRHV9lChoBmgJaA9DCDkOvFruTATAlIaUUpRoFUsyaBZHQKWUk7UXpGF1fZQoaAZoCWgPQwjcgxCQLyHzv5SGlFKUaBVLMmgWR0CllmrC3w1BdX2UKGgGaAloD0MINX12wHVF/b+UhpRSlGgVSzJoFkdApZYl9nbqQnV9lChoBmgJaA9DCJF7urpj8fy/lIaUUpRoFUsyaBZHQKWV4Yk3S8d1fZQoaAZoCWgPQwjcL5+sGC76v5SGlFKUaBVLMmgWR0CllaDV6NVBdX2UKGgGaAloD0MIs3xdhv/0/L+UhpRSlGgVSzJoFkdApZeEU7CBPXV9lChoBmgJaA9DCDWaXIyBtQDAlIaUUpRoFUsyaBZHQKWXP49ovi91fZQoaAZoCWgPQwjLS/4nfzfzv5SGlFKUaBVLMmgWR0CllvsHbAUMdX2UKGgGaAloD0MIbO7of7kW/r+UhpRSlGgVSzJoFkdApZa5vWH1vnV9lChoBmgJaA9DCN1e0hito/q/lIaUUpRoFUsyaBZHQKWYpHjp9ql1fZQoaAZoCWgPQwhZFHZR9ID6v5SGlFKUaBVLMmgWR0ClmF+OOsDGdX2UKGgGaAloD0MI8UqS5/q+/7+UhpRSlGgVSzJoFkdApZgamygPE3V9lChoBmgJaA9DCPXb14FzBve/lIaUUpRoFUsyaBZHQKWX2Xk5p8F1fZQoaAZoCWgPQwiLprOTwXEAwJSGlFKUaBVLMmgWR0ClmcYGD+R6dX2UKGgGaAloD0MIzvv/OGGCBsCUhpRSlGgVSzJoFkdApZmBWtEG7nV9lChoBmgJaA9DCDxmoDL+ffe/lIaUUpRoFUsyaBZHQKWZPKRMewN1fZQoaAZoCWgPQwgonUgw1Qz5v5SGlFKUaBVLMmgWR0ClmPv/7zkIdX2UKGgGaAloD0MIOZz51Ryg/r+UhpRSlGgVSzJoFkdApZrK9f1Hv3V9lChoBmgJaA9DCOC6YkZ4e/e/lIaUUpRoFUsyaBZHQKWahhXKbKB1fZQoaAZoCWgPQwhi1ouhnGj4v5SGlFKUaBVLMmgWR0ClmkE4FRpDdX2UKGgGaAloD0MI5UF6ihyi+L+UhpRSlGgVSzJoFkdApZoAJ3PiUHV9lChoBmgJaA9DCKvRqwFKw/K/lIaUUpRoFUsyaBZHQKWb8r8R+Sd1fZQoaAZoCWgPQwisyr4rgv/4v5SGlFKUaBVLMmgWR0Clm64BFNL2dX2UKGgGaAloD0MIpZ4FobwP+L+UhpRSlGgVSzJoFkdApZtpRwZOz3V9lChoBmgJaA9DCLJiuDoA4ve/lIaUUpRoFUsyaBZHQKWbKEJSiud1fZQoaAZoCWgPQwjjbDoCuJn0v5SGlFKUaBVLMmgWR0ClnQRlxwQ2dX2UKGgGaAloD0MI/0C5bd+j+L+UhpRSlGgVSzJoFkdApZy/xH5JsnV9lChoBmgJaA9DCCe9b3ztmf2/lIaUUpRoFUsyaBZHQKWcex59mYl1fZQoaAZoCWgPQwgdke9S6hL7v5SGlFKUaBVLMmgWR0ClnDod2gWadX2UKGgGaAloD0MIRgn6Cz0i+7+UhpRSlGgVSzJoFkdApZ4Y6ySmqHV9lChoBmgJaA9DCG8u/rYnyPe/lIaUUpRoFUsyaBZHQKWd1E2pAD91fZQoaAZoCWgPQwjLEMe6uM0AwJSGlFKUaBVLMmgWR0ClnY+ZXuE3dX2UKGgGaAloD0MIJGQgzy5f9b+UhpRSlGgVSzJoFkdApZ1OmYSg5HV9lChoBmgJaA9DCK7Zykv+J/C/lIaUUpRoFUsyaBZHQKWfMAS39aV1fZQoaAZoCWgPQwhEvkupS4b9v5SGlFKUaBVLMmgWR0ClnutNrTH9dX2UKGgGaAloD0MIMZi/QuZK/L+UhpRSlGgVSzJoFkdApZ6mphnanXV9lChoBmgJaA9DCOpae5+qQvy/lIaUUpRoFUsyaBZHQKWeZXQtz0Z1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc28c6b8466e31303c09fb9489d8407e9c133c94ae7d335236d752122e3018d
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:822b701fa3cc9355f3a314a025de32a574adebfa8600606967d43d072f4ba5f8
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fde99b27430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fde99b1e960>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675486038035279772, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA1gfhPgHMXz0IyMk+1gfhPgHMXz0IyMk+1gfhPgHMXz0IyMk+1gfhPgHMXz0IyMk+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA3E06v9dPyj8Ehr+/bL+Iv/0cOL2TuKs/VFXMv1EV0r7CMrY/xMusv/NAjT8nyDm9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADWB+E+AcxfPQjIyT6S3cW7vZAVPFwdr7zWB+E+AcxfPQjIyT6S3cW7vZAVPFwdr7zWB+E+AcxfPQjIyT6S3cW7vZAVPFwdr7zWB+E+AcxfPQjIyT6S3cW7vZAVPFwdr7yUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.4395129 0.05463791 0.39410424]\n [0.4395129 0.05463791 0.39410424]\n [0.4395129 0.05463791 0.39410424]\n [0.4395129 0.05463791 0.39410424]]", "desired_goal": "[[-0.72775054 1.5805615 -1.4962773 ]\n [-1.0683417 -0.04494952 1.3415703 ]\n [-1.596354 -0.41031888 1.423424 ]\n [-1.3499684 1.1035446 -0.0453569 ]]", "observation": "[[ 0.4395129 0.05463791 0.39410424 -0.00603838 0.00912875 -0.0213763 ]\n [ 0.4395129 0.05463791 0.39410424 -0.00603838 0.00912875 -0.0213763 ]\n [ 0.4395129 0.05463791 0.39410424 -0.00603838 0.00912875 -0.0213763 ]\n [ 0.4395129 0.05463791 0.39410424 -0.00603838 0.00912875 -0.0213763 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAIDEZvp8jqz3Zlf48AEIIO/6DC75lBpc+sDsNPoClKby48hE8FYWFPT3fVb0t9gI+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.14960146 0.08356404 0.03107731]\n [ 0.00207913 -0.1362457 0.29497066]\n [ 0.137923 -0.0103544 0.00890797]\n [ 0.06519524 -0.05221485 0.12789221]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIavmBqzxBAMCUhpRSlIwBbJRLMowBdJRHQKWE8mfGuLd1fZQoaAZoCWgPQwjvj/eqlUkDwJSGlFKUaBVLMmgWR0ClhK2PLgXNdX2UKGgGaAloD0MIMH+FzJWB/L+UhpRSlGgVSzJoFkdApYRouyu6mXV9lChoBmgJaA9DCCUH7GryNALAlIaUUpRoFUsyaBZHQKWEJ3aBZp11fZQoaAZoCWgPQwiIodXJGQoEwJSGlFKUaBVLMmgWR0ClhgZ93KSxdX2UKGgGaAloD0MIkUjb+BO1BMCUhpRSlGgVSzJoFkdApYXBvegte3V9lChoBmgJaA9DCM/ZAkLrQQDAlIaUUpRoFUsyaBZHQKWFfM0xdpt1fZQoaAZoCWgPQwiYofFEECcDwJSGlFKUaBVLMmgWR0ClhTu58Sf2dX2UKGgGaAloD0MIxHk4gem0/r+UhpRSlGgVSzJoFkdApYcZn6Eal3V9lChoBmgJaA9DCIz34/bL5/e/lIaUUpRoFUsyaBZHQKWG1PUKArh1fZQoaAZoCWgPQwiDFhIwuvz8v5SGlFKUaBVLMmgWR0ClhpBGYrrgdX2UKGgGaAloD0MINgTHZdxU/r+UhpRSlGgVSzJoFkdApYZP6InBtXV9lChoBmgJaA9DCOJ30y07hADAlIaUUpRoFUsyaBZHQKWIGUMXrMV1fZQoaAZoCWgPQwjH1F3ZBeMAwJSGlFKUaBVLMmgWR0Clh9Rr8BMjdX2UKGgGaAloD0MIGyycpPnjBMCUhpRSlGgVSzJoFkdApYePiT+vQnV9lChoBmgJaA9DCMCSq1j85vy/lIaUUpRoFUsyaBZHQKWHTmOEM9d1fZQoaAZoCWgPQwjedqG5TqMGwJSGlFKUaBVLMmgWR0CliSgH/tIDdX2UKGgGaAloD0MIT+j1J/G58r+UhpRSlGgVSzJoFkdApYjjJr+HanV9lChoBmgJaA9DCAqhgy7hkPu/lIaUUpRoFUsyaBZHQKWInmKZUkx1fZQoaAZoCWgPQwjikuNO6eD+v5SGlFKUaBVLMmgWR0CliF1w5vLpdX2UKGgGaAloD0MI5lsf1hs1/L+UhpRSlGgVSzJoFkdApYpNIwudw3V9lChoBmgJaA9DCBLaci7Flf+/lIaUUpRoFUsyaBZHQKWKCMdcSoR1fZQoaAZoCWgPQwgMOiF00OX0v5SGlFKUaBVLMmgWR0ClicQ0GeMAdX2UKGgGaAloD0MIdZDXg0kx+7+UhpRSlGgVSzJoFkdApYmDMTviLnV9lChoBmgJaA9DCOoihbLwFQbAlIaUUpRoFUsyaBZHQKWLbTP0I1N1fZQoaAZoCWgPQwgJibSNP1EBwJSGlFKUaBVLMmgWR0CliyhxYJVsdX2UKGgGaAloD0MIPx2PGahM+L+UhpRSlGgVSzJoFkdApYrj0pVjqnV9lChoBmgJaA9DCGCt2jUhrf+/lIaUUpRoFUsyaBZHQKWKoryUcGV1fZQoaAZoCWgPQwhcOXtntNXxv5SGlFKUaBVLMmgWR0CljImFSKm9dX2UKGgGaAloD0MIEtpyLsWV9L+UhpRSlGgVSzJoFkdApYxE3ZPEbnV9lChoBmgJaA9DCMBcixagLfy/lIaUUpRoFUsyaBZHQKWMAE+xGDt1fZQoaAZoCWgPQwia0Y+GUyb4v5SGlFKUaBVLMmgWR0Cli79RJmNBdX2UKGgGaAloD0MIdCUC1T+ICsCUhpRSlGgVSzJoFkdApY2rAeq7y3V9lChoBmgJaA9DCHf3AN2XM/q/lIaUUpRoFUsyaBZHQKWNZjI7vG91fZQoaAZoCWgPQwhN845TdGQAwJSGlFKUaBVLMmgWR0CljSGkFfRedX2UKGgGaAloD0MIzHucacL2+L+UhpRSlGgVSzJoFkdApYzg0bcXWXV9lChoBmgJaA9DCEvK3ef46Pm/lIaUUpRoFUsyaBZHQKWOzqdpZfV1fZQoaAZoCWgPQwi+TX/2I0X3v5SGlFKUaBVLMmgWR0Cljop9JBgNdX2UKGgGaAloD0MI4qsdxTkq9b+UhpRSlGgVSzJoFkdApY5F7OVxCXV9lChoBmgJaA9DCPfHe9XKBPy/lIaUUpRoFUsyaBZHQKWOBSThYNl1fZQoaAZoCWgPQwg+r3jqkcb7v5SGlFKUaBVLMmgWR0Clj+OzyBkJdX2UKGgGaAloD0MIJsPxfAaU8b+UhpRSlGgVSzJoFkdApY+fFJg9eXV9lChoBmgJaA9DCFUYWwhykPi/lIaUUpRoFUsyaBZHQKWPWm+Cbtt1fZQoaAZoCWgPQwgD7KNTV374v5SGlFKUaBVLMmgWR0CljxlfReC1dX2UKGgGaAloD0MIRMTNqWQgAMCUhpRSlGgVSzJoFkdApZD3ezlcQnV9lChoBmgJaA9DCPxTqkTZW/a/lIaUUpRoFUsyaBZHQKWQstCiRGN1fZQoaAZoCWgPQwj5Tsx6MdT3v5SGlFKUaBVLMmgWR0ClkG3yy2QXdX2UKGgGaAloD0MI1HyVfOzu8r+UhpRSlGgVSzJoFkdApZAs9KVY6nV9lChoBmgJaA9DCORlTSzwFQLAlIaUUpRoFUsyaBZHQKWSF+8XenB1fZQoaAZoCWgPQwhkz57L1GT0v5SGlFKUaBVLMmgWR0ClkdMuWa+fdX2UKGgGaAloD0MIZvm6DP+p/L+UhpRSlGgVSzJoFkdApZGOlO45LnV9lChoBmgJaA9DCNoEGJY/X+6/lIaUUpRoFUsyaBZHQKWRTZkCmuV1fZQoaAZoCWgPQwiEglK0cu/9v5SGlFKUaBVLMmgWR0ClkyhybQTmdX2UKGgGaAloD0MIaVGf5A4b+L+UhpRSlGgVSzJoFkdApZLjk2gnMXV9lChoBmgJaA9DCNTzbiwozADAlIaUUpRoFUsyaBZHQKWSnqxC6Yp1fZQoaAZoCWgPQwjaVN0jm0sFwJSGlFKUaBVLMmgWR0Clkl3Ehq0udX2UKGgGaAloD0MI8X7cfvlk+L+UhpRSlGgVSzJoFkdApZRC7NB4U3V9lChoBmgJaA9DCDkNUYU/A/y/lIaUUpRoFUsyaBZHQKWT/pGnXNF1fZQoaAZoCWgPQwg6dlCJ61j3v5SGlFKUaBVLMmgWR0Clk7m3nZCfdX2UKGgGaAloD0MIJa5jXHHx+r+UhpRSlGgVSzJoFkdApZN4soUi6nV9lChoBmgJaA9DCGjqdYvAWPe/lIaUUpRoFUsyaBZHQKWVXc32mHh1fZQoaAZoCWgPQwhGtB1Td2UBwJSGlFKUaBVLMmgWR0CllRlWfbsXdX2UKGgGaAloD0MIj3HFxVE5+L+UhpRSlGgVSzJoFkdApZTUxdpqRHV9lChoBmgJaA9DCDkOvFruTATAlIaUUpRoFUsyaBZHQKWUk7UXpGF1fZQoaAZoCWgPQwjcgxCQLyHzv5SGlFKUaBVLMmgWR0CllmrC3w1BdX2UKGgGaAloD0MINX12wHVF/b+UhpRSlGgVSzJoFkdApZYl9nbqQnV9lChoBmgJaA9DCJF7urpj8fy/lIaUUpRoFUsyaBZHQKWV4Yk3S8d1fZQoaAZoCWgPQwjcL5+sGC76v5SGlFKUaBVLMmgWR0CllaDV6NVBdX2UKGgGaAloD0MIs3xdhv/0/L+UhpRSlGgVSzJoFkdApZeEU7CBPXV9lChoBmgJaA9DCDWaXIyBtQDAlIaUUpRoFUsyaBZHQKWXP49ovi91fZQoaAZoCWgPQwjLS/4nfzfzv5SGlFKUaBVLMmgWR0CllvsHbAUMdX2UKGgGaAloD0MIbO7of7kW/r+UhpRSlGgVSzJoFkdApZa5vWH1vnV9lChoBmgJaA9DCN1e0hito/q/lIaUUpRoFUsyaBZHQKWYpHjp9ql1fZQoaAZoCWgPQwhZFHZR9ID6v5SGlFKUaBVLMmgWR0ClmF+OOsDGdX2UKGgGaAloD0MI8UqS5/q+/7+UhpRSlGgVSzJoFkdApZgamygPE3V9lChoBmgJaA9DCPXb14FzBve/lIaUUpRoFUsyaBZHQKWX2Xk5p8F1fZQoaAZoCWgPQwiLprOTwXEAwJSGlFKUaBVLMmgWR0ClmcYGD+R6dX2UKGgGaAloD0MIzvv/OGGCBsCUhpRSlGgVSzJoFkdApZmBWtEG7nV9lChoBmgJaA9DCDxmoDL+ffe/lIaUUpRoFUsyaBZHQKWZPKRMewN1fZQoaAZoCWgPQwgonUgw1Qz5v5SGlFKUaBVLMmgWR0ClmPv/7zkIdX2UKGgGaAloD0MIOZz51Ryg/r+UhpRSlGgVSzJoFkdApZrK9f1Hv3V9lChoBmgJaA9DCOC6YkZ4e/e/lIaUUpRoFUsyaBZHQKWahhXKbKB1fZQoaAZoCWgPQwhi1ouhnGj4v5SGlFKUaBVLMmgWR0ClmkE4FRpDdX2UKGgGaAloD0MI5UF6ihyi+L+UhpRSlGgVSzJoFkdApZoAJ3PiUHV9lChoBmgJaA9DCKvRqwFKw/K/lIaUUpRoFUsyaBZHQKWb8r8R+Sd1fZQoaAZoCWgPQwisyr4rgv/4v5SGlFKUaBVLMmgWR0Clm64BFNL2dX2UKGgGaAloD0MIpZ4FobwP+L+UhpRSlGgVSzJoFkdApZtpRwZOz3V9lChoBmgJaA9DCLJiuDoA4ve/lIaUUpRoFUsyaBZHQKWbKEJSiud1fZQoaAZoCWgPQwjjbDoCuJn0v5SGlFKUaBVLMmgWR0ClnQRlxwQ2dX2UKGgGaAloD0MI/0C5bd+j+L+UhpRSlGgVSzJoFkdApZy/xH5JsnV9lChoBmgJaA9DCCe9b3ztmf2/lIaUUpRoFUsyaBZHQKWcex59mYl1fZQoaAZoCWgPQwgdke9S6hL7v5SGlFKUaBVLMmgWR0ClnDod2gWadX2UKGgGaAloD0MIRgn6Cz0i+7+UhpRSlGgVSzJoFkdApZ4Y6ySmqHV9lChoBmgJaA9DCG8u/rYnyPe/lIaUUpRoFUsyaBZHQKWd1E2pAD91fZQoaAZoCWgPQwjLEMe6uM0AwJSGlFKUaBVLMmgWR0ClnY+ZXuE3dX2UKGgGaAloD0MIJGQgzy5f9b+UhpRSlGgVSzJoFkdApZ1OmYSg5HV9lChoBmgJaA9DCK7Zykv+J/C/lIaUUpRoFUsyaBZHQKWfMAS39aV1fZQoaAZoCWgPQwhEvkupS4b9v5SGlFKUaBVLMmgWR0ClnutNrTH9dX2UKGgGaAloD0MIMZi/QuZK/L+UhpRSlGgVSzJoFkdApZ6mphnanXV9lChoBmgJaA9DCOpae5+qQvy/lIaUUpRoFUsyaBZHQKWeZXQtz0Z1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (718 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -1.4860277086379938, "std_reward": 0.3532547286602653, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-04T05:41:27.552533"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bca3e47fd95cdc4299bc3177a0c096e7eebe501ec92e2fb08590f8b58d710455
3
+ size 3056