YuanLiuuuuuu
commited on
Commit
•
e28b279
1
Parent(s):
fcb41df
Add files using upload-large-folder tool
Browse files- catty.py +221 -0
- config.json +188 -0
- configuration_llama.py +103 -0
- configuration_points_chat.py +39 -0
- dynamic_high_resolution.py +112 -0
- generation_config.json +4 -0
- model-00001-of-00008.safetensors +3 -0
- model-00002-of-00008.safetensors +3 -0
- model-00003-of-00008.safetensors +3 -0
- model-00004-of-00008.safetensors +3 -0
- model-00005-of-00008.safetensors +3 -0
- model-00006-of-00008.safetensors +3 -0
- model-00007-of-00008.safetensors +3 -0
- model-00008-of-00008.safetensors +3 -0
- model.safetensors.index.json +0 -0
- modeling_llama.py +978 -0
- modeling_points_chat.py +236 -0
- preprocessor_config.json +27 -0
- special_tokens_map.json +30 -0
- tokenizer.model +3 -0
- tokenizer_config.json +53 -0
catty.py
ADDED
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import List, Tuple
|
3 |
+
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
from .dynamic_high_resolution import factorize_number
|
7 |
+
|
8 |
+
|
9 |
+
def construct_mapping_dict(max_splits: int = 12) -> dict:
|
10 |
+
"""Construct a mapping dictionary for the given max_splits.
|
11 |
+
|
12 |
+
Args:
|
13 |
+
max_splits (int, optional): The maximum number of splits.
|
14 |
+
Defaults to 12.
|
15 |
+
|
16 |
+
Returns:
|
17 |
+
dict: A mapping dictionary for the given max_splits.
|
18 |
+
"""
|
19 |
+
mapping_dict = {}
|
20 |
+
for i in range(1, max_splits + 1):
|
21 |
+
factor_list = factorize_number(i)
|
22 |
+
for factor in factor_list:
|
23 |
+
ratio = factor[0] / factor[1]
|
24 |
+
if ratio not in mapping_dict:
|
25 |
+
mapping_dict[ratio] = [factor]
|
26 |
+
else:
|
27 |
+
mapping_dict[ratio].append(factor)
|
28 |
+
return mapping_dict
|
29 |
+
|
30 |
+
|
31 |
+
def save_image_list(image_list: List[Image.Image], save_folder: str) -> None:
|
32 |
+
"""Save a list of images to a folder.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
image_list (List[Image.Image]): A list of images.
|
36 |
+
save_folder (str): The folder to save the images to.
|
37 |
+
"""
|
38 |
+
os.makedirs(save_folder, exist_ok=True)
|
39 |
+
for i, image in enumerate(image_list):
|
40 |
+
image.save(os.path.join(save_folder, f'{i}.png'))
|
41 |
+
|
42 |
+
|
43 |
+
def resize_to_best_size(image: Image.Image, best_slices: tuple,
|
44 |
+
width_slices: int, height_slices: int,
|
45 |
+
sub_image_size: int) -> Image.Image:
|
46 |
+
"""Resize an image to the best size for the given number of slices.
|
47 |
+
|
48 |
+
Args:
|
49 |
+
image (Image.Image): The image to resize.
|
50 |
+
best_slices (tuple): The best number of slices for the image.
|
51 |
+
width_slices (int): The number of horizontal slices.
|
52 |
+
height_slices (int): The number of vertical slices.
|
53 |
+
sub_image_size (int): The size of the sub-images.
|
54 |
+
|
55 |
+
Returns:
|
56 |
+
Image.Image: The resized image.
|
57 |
+
"""
|
58 |
+
width, height = image.size
|
59 |
+
best_width_slices, best_height_slices = best_slices
|
60 |
+
if width_slices < height_slices:
|
61 |
+
new_image_width = best_width_slices * sub_image_size
|
62 |
+
new_image_height = int(height / width * new_image_width)
|
63 |
+
else:
|
64 |
+
new_image_height = best_height_slices * sub_image_size
|
65 |
+
new_image_width = int(width / height * new_image_height)
|
66 |
+
new_image = image.resize((new_image_width, new_image_height), resample=2)
|
67 |
+
return new_image
|
68 |
+
|
69 |
+
|
70 |
+
def compute_strides(height: int, width: int, sub_image_size: int,
|
71 |
+
slices: Tuple[int, int]) -> Tuple[int, int]:
|
72 |
+
"""Compute the strides for the given image size and slices.
|
73 |
+
|
74 |
+
Args:
|
75 |
+
height (int): The height of the image.
|
76 |
+
width (int): The width of the image.
|
77 |
+
sub_image_size (int): The size of the sub-images.
|
78 |
+
slices (Tuple[int, int]): The number of horizontal and vertical slices.
|
79 |
+
|
80 |
+
Returns:
|
81 |
+
Tuple[int, int]: The strides for the given image size and slices.
|
82 |
+
"""
|
83 |
+
slice_width, slice_height = slices
|
84 |
+
if slice_width > 1:
|
85 |
+
stride_x = (width - sub_image_size) // (slice_width - 1)
|
86 |
+
else:
|
87 |
+
stride_x = 0
|
88 |
+
if slice_height > 1:
|
89 |
+
stride_y = (height - sub_image_size) // (slice_height - 1)
|
90 |
+
else:
|
91 |
+
stride_y = 0
|
92 |
+
return stride_x, stride_y
|
93 |
+
|
94 |
+
|
95 |
+
def sliding_window_crop(image: Image.Image, window_size: int,
|
96 |
+
slices: Tuple[int, int]) -> List[Image.Image]:
|
97 |
+
"""Crop an image into sub-images using a sliding window.
|
98 |
+
|
99 |
+
Args:
|
100 |
+
image (Image.Image): The image to crop.
|
101 |
+
window_size (int): The size of the sub-images.
|
102 |
+
slices (Tuple[int, int]): The number of horizontal and vertical slices.
|
103 |
+
|
104 |
+
Returns:
|
105 |
+
List[Image]: A list of cropped images.
|
106 |
+
"""
|
107 |
+
width, height = image.size
|
108 |
+
stride_x, stride_y = compute_strides(height, width, window_size, slices)
|
109 |
+
sub_images = []
|
110 |
+
if stride_x == 0:
|
111 |
+
stride_x = window_size
|
112 |
+
|
113 |
+
if stride_y == 0:
|
114 |
+
stride_y = window_size
|
115 |
+
for y in range(0, height - window_size + 1, stride_y):
|
116 |
+
for x in range(0, width - window_size + 1, stride_x):
|
117 |
+
sub_image = image.crop((x, y, x + window_size, y + window_size))
|
118 |
+
sub_images.append(sub_image)
|
119 |
+
return sub_images
|
120 |
+
|
121 |
+
|
122 |
+
def find_best_slices(width_slices: int,
|
123 |
+
height_slices: int,
|
124 |
+
aspect_ratio: float,
|
125 |
+
max_splits: int = 12) -> list:
|
126 |
+
"""Find the best slices for the given image size and aspect ratio.
|
127 |
+
|
128 |
+
Args:
|
129 |
+
width_slices (int): The number of horizontal slices.
|
130 |
+
height_slices (int): The number of vertical slices.
|
131 |
+
aspect_ratio (float): The aspect ratio of the image.
|
132 |
+
max_splits (int, optional): The maximum number of splits.
|
133 |
+
Defaults to 12.
|
134 |
+
|
135 |
+
Returns:
|
136 |
+
list: the best slices for the given image.
|
137 |
+
"""
|
138 |
+
mapping_dict = construct_mapping_dict(max_splits)
|
139 |
+
if aspect_ratio < 1:
|
140 |
+
mapping_dict = {
|
141 |
+
k: v
|
142 |
+
for k, v in mapping_dict.items() if k <= aspect_ratio
|
143 |
+
}
|
144 |
+
elif aspect_ratio > 1:
|
145 |
+
mapping_dict = {
|
146 |
+
k: v
|
147 |
+
for k, v in mapping_dict.items() if k >= aspect_ratio
|
148 |
+
}
|
149 |
+
# find the value which key is the closest to the ratio
|
150 |
+
best_ratio = min(mapping_dict.keys(), key=lambda x: abs(x - aspect_ratio))
|
151 |
+
# best_image_sizes is a list of image sizes
|
152 |
+
best_image_sizes = mapping_dict[best_ratio]
|
153 |
+
# find the image_size whose area is closest to the current image size
|
154 |
+
best_slices = min(
|
155 |
+
best_image_sizes,
|
156 |
+
key=lambda x: abs(x[0] * x[1] - width_slices * height_slices))
|
157 |
+
return best_slices
|
158 |
+
|
159 |
+
|
160 |
+
def split_image_with_catty(pil_image: Image.Image,
|
161 |
+
image_size: int = 336,
|
162 |
+
max_crop_slices: int = 8,
|
163 |
+
save_folder: str = None,
|
164 |
+
add_thumbnail: bool = True,
|
165 |
+
do_resize: bool = False,
|
166 |
+
**kwargs) -> List[Image.Image]:
|
167 |
+
"""Split an image into sub-images using Catty.
|
168 |
+
|
169 |
+
Args:
|
170 |
+
pil_image (Image.Image): The image to split.
|
171 |
+
image_size (int, optional): The size of the image.
|
172 |
+
Defaults to 336.
|
173 |
+
max_crop_slices (int, optional): The maximum number of slices.
|
174 |
+
Defaults to 8.
|
175 |
+
save_folder (str, optional): The folder to save the sub-images.
|
176 |
+
Defaults to None.
|
177 |
+
add_thumbnail (bool, optional): Whether to add a thumbnail.
|
178 |
+
Defaults to False.
|
179 |
+
do_resize (bool, optional): Whether to resize the image to fit the
|
180 |
+
maximum number of slices. Defaults to False.
|
181 |
+
|
182 |
+
Returns:
|
183 |
+
List[Image.Image]: A list of cropped images.
|
184 |
+
"""
|
185 |
+
width, height = pil_image.size
|
186 |
+
ratio = width / height
|
187 |
+
if ratio > max_crop_slices or ratio < 1 / max_crop_slices:
|
188 |
+
if do_resize:
|
189 |
+
print(
|
190 |
+
f'Resizing image to fit maximum number of slices ({max_crop_slices})' # noqa
|
191 |
+
) # noqa
|
192 |
+
if width > height:
|
193 |
+
new_width = max_crop_slices * height
|
194 |
+
new_height = height
|
195 |
+
else:
|
196 |
+
new_width = width
|
197 |
+
new_height = max_crop_slices * width
|
198 |
+
pil_image = pil_image.resize((new_width, new_height), resample=2)
|
199 |
+
width, height = pil_image.size
|
200 |
+
ratio = width / height
|
201 |
+
else:
|
202 |
+
print(
|
203 |
+
f'Image aspect ratio ({ratio:.2f}) is out of range: ({1/max_crop_slices:.2f}, {max_crop_slices:.2f})' # noqa
|
204 |
+
)
|
205 |
+
return None, None
|
206 |
+
width_slices = width / image_size
|
207 |
+
height_slices = height / image_size
|
208 |
+
best_slices = find_best_slices(width_slices, height_slices, ratio,
|
209 |
+
max_crop_slices)
|
210 |
+
pil_image = resize_to_best_size(pil_image, best_slices, width_slices,
|
211 |
+
height_slices, image_size)
|
212 |
+
width, height = pil_image.size
|
213 |
+
sub_images = sliding_window_crop(pil_image, image_size, best_slices)
|
214 |
+
if add_thumbnail:
|
215 |
+
thumbnail_image = pil_image.resize((image_size, image_size),
|
216 |
+
resample=2)
|
217 |
+
sub_images.append(thumbnail_image)
|
218 |
+
# save split images to folder for debugging
|
219 |
+
if save_folder is not None:
|
220 |
+
save_image_list(sub_images, save_folder)
|
221 |
+
return sub_images
|
config.json
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_commit_hash": null,
|
3 |
+
"_name_or_path": "/mnt/cephfs/bensenliu/wfs/weights/mm/mmq-llava-20240826e1-sft-points-hf",
|
4 |
+
"architectures": [
|
5 |
+
"POINTSChatModel"
|
6 |
+
],
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "configuration_points_chat.POINTSChatConfig",
|
9 |
+
"AutoModelForCausalLM": "modeling_points_chat.POINTSChatModel"
|
10 |
+
},
|
11 |
+
"llm_config": {
|
12 |
+
"_name_or_path": "",
|
13 |
+
"add_cross_attention": false,
|
14 |
+
"architectures": null,
|
15 |
+
"auto_map": {
|
16 |
+
"AutoConfig": "configuration_llama.CustomLlamaConfig",
|
17 |
+
"AutoModelForCausalLM": "modeling_llama.CustomLlamaForCausalLM"
|
18 |
+
},
|
19 |
+
"bad_words_ids": null,
|
20 |
+
"begin_suppress_tokens": null,
|
21 |
+
"bos_token_id": 0,
|
22 |
+
"chunk_size_feed_forward": 0,
|
23 |
+
"cross_attention_hidden_size": null,
|
24 |
+
"decoder_start_token_id": null,
|
25 |
+
"diversity_penalty": 0.0,
|
26 |
+
"do_sample": false,
|
27 |
+
"early_stopping": false,
|
28 |
+
"encoder_no_repeat_ngram_size": 0,
|
29 |
+
"eos_token_id": [
|
30 |
+
2,
|
31 |
+
3
|
32 |
+
],
|
33 |
+
"exponential_decay_length_penalty": null,
|
34 |
+
"ffn_hidden_size": 11008,
|
35 |
+
"finetuning_task": null,
|
36 |
+
"forced_bos_token_id": null,
|
37 |
+
"forced_eos_token_id": null,
|
38 |
+
"hidden_act": "swiglu",
|
39 |
+
"hidden_size": 4096,
|
40 |
+
"id2label": {
|
41 |
+
"0": "LABEL_0",
|
42 |
+
"1": "LABEL_1"
|
43 |
+
},
|
44 |
+
"initializer_range": 0.02,
|
45 |
+
"is_decoder": false,
|
46 |
+
"is_encoder_decoder": false,
|
47 |
+
"label2id": {
|
48 |
+
"LABEL_0": 0,
|
49 |
+
"LABEL_1": 1
|
50 |
+
},
|
51 |
+
"layernorm_epsilon": 1e-05,
|
52 |
+
"length_penalty": 1.0,
|
53 |
+
"max_length": 20,
|
54 |
+
"max_position_embeddings": 16384,
|
55 |
+
"min_length": 0,
|
56 |
+
"mlp_fc1_bias": false,
|
57 |
+
"mlp_fc2_bias": false,
|
58 |
+
"model_type": "custom_llama",
|
59 |
+
"no_repeat_ngram_size": 0,
|
60 |
+
"norm_type": "rms_norm",
|
61 |
+
"num_attention_heads": 32,
|
62 |
+
"num_beam_groups": 1,
|
63 |
+
"num_beams": 1,
|
64 |
+
"num_hidden_layers": 48,
|
65 |
+
"num_kv_heads": 4,
|
66 |
+
"num_layers": 48,
|
67 |
+
"num_return_sequences": 1,
|
68 |
+
"out_proj_bias": false,
|
69 |
+
"output_attentions": false,
|
70 |
+
"output_hidden_states": false,
|
71 |
+
"output_scores": false,
|
72 |
+
"pad_token_id": null,
|
73 |
+
"prefix": null,
|
74 |
+
"problem_type": null,
|
75 |
+
"pruned_heads": {},
|
76 |
+
"qkv_proj_bias": false,
|
77 |
+
"remove_invalid_values": false,
|
78 |
+
"repetition_penalty": 1.0,
|
79 |
+
"return_dict": true,
|
80 |
+
"return_dict_in_generate": false,
|
81 |
+
"rotary_compress": 1.0,
|
82 |
+
"rotary_emb_base": 5000000.0,
|
83 |
+
"rotary_pct": 1.0,
|
84 |
+
"sep_token_id": null,
|
85 |
+
"share_kv_num_layers": 1,
|
86 |
+
"sliding_window_size": -1,
|
87 |
+
"sliding_window_type": null,
|
88 |
+
"suppress_tokens": null,
|
89 |
+
"task_specific_params": null,
|
90 |
+
"temperature": 1.0,
|
91 |
+
"tf_legacy_loss": false,
|
92 |
+
"tie_encoder_decoder": false,
|
93 |
+
"tie_word_embeddings": false,
|
94 |
+
"tokenizer_class": null,
|
95 |
+
"top_k": 50,
|
96 |
+
"top_p": 1.0,
|
97 |
+
"torch_dtype": null,
|
98 |
+
"torchscript": false,
|
99 |
+
"transformers_version": "4.44.2",
|
100 |
+
"typical_p": 1.0,
|
101 |
+
"use_bfloat16": false,
|
102 |
+
"use_cache": true,
|
103 |
+
"use_gqa": true,
|
104 |
+
"vocab_size": 64000
|
105 |
+
},
|
106 |
+
"torch_dtype": "float32",
|
107 |
+
"transformers_version": null,
|
108 |
+
"vision_config": {
|
109 |
+
"_name_or_path": "/mnt/cephfs/bensenliu/exp_runs/weights/mm/CLIP-L-336/clip-vit-large-patch14-336",
|
110 |
+
"add_cross_attention": false,
|
111 |
+
"architectures": [
|
112 |
+
"CLIPVisionModel"
|
113 |
+
],
|
114 |
+
"attention_dropout": 0.0,
|
115 |
+
"bad_words_ids": null,
|
116 |
+
"begin_suppress_tokens": null,
|
117 |
+
"bos_token_id": null,
|
118 |
+
"chunk_size_feed_forward": 0,
|
119 |
+
"cross_attention_hidden_size": null,
|
120 |
+
"decoder_start_token_id": null,
|
121 |
+
"diversity_penalty": 0.0,
|
122 |
+
"do_sample": false,
|
123 |
+
"dropout": 0.0,
|
124 |
+
"early_stopping": false,
|
125 |
+
"encoder_no_repeat_ngram_size": 0,
|
126 |
+
"eos_token_id": null,
|
127 |
+
"exponential_decay_length_penalty": null,
|
128 |
+
"finetuning_task": null,
|
129 |
+
"forced_bos_token_id": null,
|
130 |
+
"forced_eos_token_id": null,
|
131 |
+
"hidden_act": "quick_gelu",
|
132 |
+
"hidden_size": 1024,
|
133 |
+
"id2label": {
|
134 |
+
"0": "LABEL_0",
|
135 |
+
"1": "LABEL_1"
|
136 |
+
},
|
137 |
+
"image_size": 336,
|
138 |
+
"initializer_factor": 1.0,
|
139 |
+
"initializer_range": 0.02,
|
140 |
+
"intermediate_size": 4096,
|
141 |
+
"is_decoder": false,
|
142 |
+
"is_encoder_decoder": false,
|
143 |
+
"label2id": {
|
144 |
+
"LABEL_0": 0,
|
145 |
+
"LABEL_1": 1
|
146 |
+
},
|
147 |
+
"layer_norm_eps": 1e-05,
|
148 |
+
"length_penalty": 1.0,
|
149 |
+
"max_length": 20,
|
150 |
+
"min_length": 0,
|
151 |
+
"model_type": "clip_vision_model",
|
152 |
+
"no_repeat_ngram_size": 0,
|
153 |
+
"num_attention_heads": 16,
|
154 |
+
"num_beam_groups": 1,
|
155 |
+
"num_beams": 1,
|
156 |
+
"num_channels": 3,
|
157 |
+
"num_hidden_layers": 24,
|
158 |
+
"num_return_sequences": 1,
|
159 |
+
"output_attentions": false,
|
160 |
+
"output_hidden_states": false,
|
161 |
+
"output_scores": false,
|
162 |
+
"pad_token_id": null,
|
163 |
+
"patch_size": 14,
|
164 |
+
"prefix": null,
|
165 |
+
"problem_type": null,
|
166 |
+
"projection_dim": 768,
|
167 |
+
"pruned_heads": {},
|
168 |
+
"remove_invalid_values": false,
|
169 |
+
"repetition_penalty": 1.0,
|
170 |
+
"return_dict": true,
|
171 |
+
"return_dict_in_generate": false,
|
172 |
+
"sep_token_id": null,
|
173 |
+
"suppress_tokens": null,
|
174 |
+
"task_specific_params": null,
|
175 |
+
"temperature": 1.0,
|
176 |
+
"tf_legacy_loss": false,
|
177 |
+
"tie_encoder_decoder": false,
|
178 |
+
"tie_word_embeddings": true,
|
179 |
+
"tokenizer_class": null,
|
180 |
+
"top_k": 50,
|
181 |
+
"top_p": 1.0,
|
182 |
+
"torch_dtype": "float32",
|
183 |
+
"torchscript": false,
|
184 |
+
"transformers_version": "4.44.2",
|
185 |
+
"typical_p": 1.0,
|
186 |
+
"use_bfloat16": false
|
187 |
+
}
|
188 |
+
}
|
configuration_llama.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Modify the original configuration_llama.py to
|
2 |
+
# be compatiable with our training framework.
|
3 |
+
|
4 |
+
|
5 |
+
from transformers.configuration_utils import PretrainedConfig
|
6 |
+
from transformers.utils import logging
|
7 |
+
|
8 |
+
logger = logging.get_logger(__name__)
|
9 |
+
|
10 |
+
|
11 |
+
class CustomLlamaConfig(PretrainedConfig):
|
12 |
+
"""
|
13 |
+
Args:
|
14 |
+
vocab_size (`int`, *optional*, defaults to 50432):
|
15 |
+
Vocabulary size of the WeLMV3 model. Defines the number of
|
16 |
+
different tokens that can be represented by the
|
17 |
+
`inputs_ids` passed when calling [`WeLMV3Model`].
|
18 |
+
hidden_size (`int`, *optional*, defaults to 6144):
|
19 |
+
Dimension of the encoder layers and the pooler layer.
|
20 |
+
num_hidden_layers (`int`, *optional*, defaults to 44):
|
21 |
+
Number of hidden layers in the Transformer encoder.
|
22 |
+
num_attention_heads (`int`, *optional*, defaults to 64):
|
23 |
+
Number of attention heads for each attention layer in the
|
24 |
+
Transformer encoder.
|
25 |
+
num_kv_heads (`int`, *optional*, defaults to 4):
|
26 |
+
Number of GQA groups.
|
27 |
+
intermediate_size (`int`, *optional*, defaults to 24576):
|
28 |
+
Dimension of the "intermediate" (i.e., feed-forward) layer in the
|
29 |
+
Transformer encoder.
|
30 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
31 |
+
The non-linear activation function (function or string) in the
|
32 |
+
encoder and pooler. If string, `"gelu"`,
|
33 |
+
`"relu"`, `"selu"` and `"gelu_new"` are supported.
|
34 |
+
rotary_pct (`float`, *optional*, defaults to 0.25):
|
35 |
+
percentage of hidden dimensions to allocate to rotary embeddings
|
36 |
+
rotary_emb_base (`int`, *optional*, defaults to 10000)
|
37 |
+
base for computing rotary embeddings frequency
|
38 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
39 |
+
The maximum sequence length that this model might ever be used
|
40 |
+
with. Typically set this to something large just in case
|
41 |
+
(e.g., 512 or 1024 or 2048).
|
42 |
+
initializer_range (`float`, *optional*, defaults to 1e-5):
|
43 |
+
The standard deviation of the truncated_normal_initializer for
|
44 |
+
initializing all weight matrices.
|
45 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
46 |
+
The epsilon used by the layer normalization layers.
|
47 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
48 |
+
Whether or not the model should return the last key/values
|
49 |
+
attentions (not used by all models). Only relevant if
|
50 |
+
`config.is_decoder=True`.
|
51 |
+
"""
|
52 |
+
model_type = "custom_llama"
|
53 |
+
|
54 |
+
def __init__(
|
55 |
+
self,
|
56 |
+
vocab_size=102400,
|
57 |
+
hidden_size=2560,
|
58 |
+
num_layers=32,
|
59 |
+
num_attention_heads=20,
|
60 |
+
num_kv_heads=4,
|
61 |
+
ffn_hidden_size=2560 * 4,
|
62 |
+
hidden_act="swiglu",
|
63 |
+
rotary_pct=1.0,
|
64 |
+
rotary_emb_base=10000,
|
65 |
+
rotary_compress=1.0,
|
66 |
+
max_position_embeddings=4096,
|
67 |
+
initializer_range=0.02,
|
68 |
+
layernorm_epsilon=1e-5,
|
69 |
+
use_cache=True,
|
70 |
+
bos_token_id=0,
|
71 |
+
eos_token_id=2,
|
72 |
+
rms_norm=None,
|
73 |
+
norm_type='layer_norm',
|
74 |
+
qkv_proj_bias=True,
|
75 |
+
out_proj_bias=True,
|
76 |
+
mlp_fc1_bias=True,
|
77 |
+
mlp_fc2_bias=True,
|
78 |
+
**kwargs,
|
79 |
+
):
|
80 |
+
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
81 |
+
self.vocab_size = vocab_size
|
82 |
+
self.max_position_embeddings = max_position_embeddings
|
83 |
+
self.hidden_size = hidden_size
|
84 |
+
self.num_layers = num_layers
|
85 |
+
self.num_attention_heads = num_attention_heads
|
86 |
+
self.num_kv_heads = num_kv_heads
|
87 |
+
self.ffn_hidden_size = ffn_hidden_size
|
88 |
+
self.hidden_act = hidden_act
|
89 |
+
self.rotary_pct = rotary_pct
|
90 |
+
self.rotary_emb_base = rotary_emb_base
|
91 |
+
self.rotary_compress = rotary_compress
|
92 |
+
self.initializer_range = initializer_range
|
93 |
+
self.layernorm_epsilon = layernorm_epsilon
|
94 |
+
self.use_cache = use_cache
|
95 |
+
if rms_norm is not None:
|
96 |
+
self.norm_type = 'rms_norm' if rms_norm else 'layer_norm'
|
97 |
+
else:
|
98 |
+
self.norm_type = norm_type
|
99 |
+
self.qkv_proj_bias = qkv_proj_bias
|
100 |
+
self.out_proj_bias = out_proj_bias
|
101 |
+
self.mlp_fc1_bias = mlp_fc1_bias
|
102 |
+
self.mlp_fc2_bias = mlp_fc2_bias
|
103 |
+
self.num_hidden_layers = num_layers
|
configuration_points_chat.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
from typing import Any, Dict, Union
|
3 |
+
|
4 |
+
from transformers import CLIPVisionConfig, PretrainedConfig
|
5 |
+
|
6 |
+
from .configuration_llama import CustomLlamaConfig
|
7 |
+
|
8 |
+
|
9 |
+
class POINTSChatConfig(PretrainedConfig):
|
10 |
+
model_type = "points_chat"
|
11 |
+
is_composition = True
|
12 |
+
"""Configuration class for `POINTS`.
|
13 |
+
|
14 |
+
Args:
|
15 |
+
vision_config (Union[dict, CLIPVisionConfig]):
|
16 |
+
Configuration of the vision model.
|
17 |
+
llm_config (Union[dict, LlamaConfig]):
|
18 |
+
Configuration of the language model.
|
19 |
+
"""
|
20 |
+
|
21 |
+
def __init__(self,
|
22 |
+
vision_config: Union[dict, CLIPVisionConfig],
|
23 |
+
llm_config: Union[dict, CustomLlamaConfig],
|
24 |
+
**kwargs) -> None:
|
25 |
+
super().__init__(**kwargs)
|
26 |
+
if isinstance(vision_config, dict):
|
27 |
+
self.vision_config = CLIPVisionConfig(**vision_config)
|
28 |
+
else:
|
29 |
+
self.vision_config = vision_config
|
30 |
+
if isinstance(llm_config, dict):
|
31 |
+
self.llm_config = CustomLlamaConfig(**llm_config)
|
32 |
+
else:
|
33 |
+
self.llm_config = llm_config
|
34 |
+
|
35 |
+
def to_dict(self) -> Dict[str, Any]:
|
36 |
+
output = copy.deepcopy(self.__dict__)
|
37 |
+
output["vision_config"] = self.vision_config.to_dict()
|
38 |
+
output["llm_config"] = self.llm_config.to_dict()
|
39 |
+
return output
|
dynamic_high_resolution.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
|
3 |
+
from PIL import Image
|
4 |
+
|
5 |
+
|
6 |
+
def factorize_number(num: int) -> list:
|
7 |
+
"""Factorize a number into its prime factors.
|
8 |
+
|
9 |
+
Args:
|
10 |
+
num (int): The number to factorize.
|
11 |
+
|
12 |
+
Returns:
|
13 |
+
list: A list of prime factors of the number.
|
14 |
+
"""
|
15 |
+
factors = []
|
16 |
+
for i in range(1, int(num) + 1):
|
17 |
+
if num % i == 0:
|
18 |
+
factors.append([i, num // i])
|
19 |
+
return factors
|
20 |
+
|
21 |
+
|
22 |
+
def construct_mapping_dict(max_splits: int = 8, image_size: int = 336) -> dict:
|
23 |
+
"""Construct a mapping dictionary for image size reduction.
|
24 |
+
|
25 |
+
Args:
|
26 |
+
max_splits (int, optional): The maximum number of splits for each
|
27 |
+
dimension. Defaults to 8.
|
28 |
+
image_size (int, optional): The original image size.
|
29 |
+
Defaults to 336.
|
30 |
+
|
31 |
+
Returns:
|
32 |
+
dict: A dictionary containing the mapping of image sizes to
|
33 |
+
the corresponding factors.
|
34 |
+
"""
|
35 |
+
mapping_dict = {}
|
36 |
+
for i in range(1, max_splits + 1):
|
37 |
+
factor_list = factorize_number(i)
|
38 |
+
for factor in factor_list:
|
39 |
+
ratio = factor[0] / factor[1]
|
40 |
+
if ratio not in mapping_dict:
|
41 |
+
mapping_dict[ratio] = [[
|
42 |
+
factor[0] * image_size, factor[1] * image_size
|
43 |
+
]]
|
44 |
+
else:
|
45 |
+
mapping_dict[ratio].append(
|
46 |
+
[factor[0] * image_size, factor[1] * image_size])
|
47 |
+
return mapping_dict
|
48 |
+
|
49 |
+
|
50 |
+
def find_best_image_size(cur_image_size: list,
|
51 |
+
max_splits: int = 8,
|
52 |
+
image_size: int = 336) -> list:
|
53 |
+
"""Find the best image size for a given image size.
|
54 |
+
|
55 |
+
Args:
|
56 |
+
cur_image_size (list): The current image size.
|
57 |
+
max_splits (int, optional): The maximum number of splits for each
|
58 |
+
dimension. Defaults to 8.
|
59 |
+
image_size (int, optional): The original image size.
|
60 |
+
Defaults to 336.
|
61 |
+
|
62 |
+
Returns:
|
63 |
+
list: The best image size for the given image size.
|
64 |
+
"""
|
65 |
+
|
66 |
+
mapping_dict = construct_mapping_dict(max_splits, image_size)
|
67 |
+
ratio = cur_image_size[0] / cur_image_size[1]
|
68 |
+
# find the value which key is the closest to the ratio
|
69 |
+
best_ratio = min(mapping_dict.keys(), key=lambda x: abs(x - ratio))
|
70 |
+
# best_image_sizes is a list of image sizes
|
71 |
+
best_image_sizes = mapping_dict[best_ratio]
|
72 |
+
# find the image_size whose area is closest to the current image size
|
73 |
+
best_image_size = min(
|
74 |
+
best_image_sizes,
|
75 |
+
key=lambda x: abs(x[0] * x[1] - cur_image_size[0] * cur_image_size[1]))
|
76 |
+
return best_image_size
|
77 |
+
|
78 |
+
|
79 |
+
def split_image(pil_image: Image.Image,
|
80 |
+
image_size: int = 336,
|
81 |
+
max_splits: int = 8) -> List[Image.Image]:
|
82 |
+
"""Split an image into sub-image.
|
83 |
+
|
84 |
+
Similar to that used in InternVL2。
|
85 |
+
|
86 |
+
Args:
|
87 |
+
pil_image (Image.Image): The input image.
|
88 |
+
image_size (int, optional): The size of the image.
|
89 |
+
Defaults to 336.
|
90 |
+
max_splits (int, optional): The maximum number of splits for each
|
91 |
+
dimension. Defaults to 8.
|
92 |
+
|
93 |
+
Returns:
|
94 |
+
List[Image.Image]: A list of cropped images.
|
95 |
+
"""
|
96 |
+
whole_sub_image = pil_image.resize((image_size, image_size), resample=2)
|
97 |
+
best_size = find_best_image_size(pil_image.size,
|
98 |
+
max_splits=max_splits,
|
99 |
+
image_size=image_size)
|
100 |
+
pil_image = pil_image.resize(best_size, resample=2)
|
101 |
+
num_sub_images = ((best_size[0] // image_size),
|
102 |
+
(best_size[1] // image_size))
|
103 |
+
# crop pil_image to sub_images
|
104 |
+
sub_images = []
|
105 |
+
for i in range(num_sub_images[1]):
|
106 |
+
for j in range(num_sub_images[0]):
|
107 |
+
sub_image = pil_image.crop(
|
108 |
+
(j * image_size, i * image_size, (j + 1) * image_size,
|
109 |
+
(i + 1) * image_size))
|
110 |
+
sub_images.append(sub_image)
|
111 |
+
sub_images.append(whole_sub_image)
|
112 |
+
return sub_images
|
generation_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"transformers_version": "4.44.2"
|
4 |
+
}
|
model-00001-of-00008.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6fdcbfe7161fec8ca6739668eab580d2fea670c806a359ecc38652ff9ed67ee9
|
3 |
+
size 4944846696
|
model-00002-of-00008.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c13b4cd61173d5c9dac009590af5ff1be0766562e8012e2934b4e302b3166b12
|
3 |
+
size 4911765320
|
model-00003-of-00008.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e2a286172bef94e6f97a06943d001ca39babdf3904dd6f47e4dbfc40534f9ada
|
3 |
+
size 4844656384
|
model-00004-of-00008.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bbd633c04c1210720cd837237bc72674edb687f8ed43ea27c9f75156bbf8e598
|
3 |
+
size 4844656400
|
model-00005-of-00008.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:73bbbcb548f36a373d7ce6de9b1ddf98a64d3f7c424a208dd2df2fb5e766d80f
|
3 |
+
size 4844656400
|
model-00006-of-00008.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:79adc627f384d0529bb53d069127c5c66ed4dcd5a86117e036f8fd5489c0c829
|
3 |
+
size 4844656400
|
model-00007-of-00008.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:87e85202b3e1443b1b82f1f2aef5bb41c19c179891d0c6d149c3483d83c445b9
|
3 |
+
size 4844656400
|
model-00008-of-00008.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2dd82377be059c8ee87d37b15a3eca0e11e05f515d459a8b6f0f9f768e357f49
|
3 |
+
size 3800190272
|
model.safetensors.index.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
modeling_llama.py
ADDED
@@ -0,0 +1,978 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from functools import partial
|
2 |
+
from typing import Optional, Tuple, Union
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn.functional as F
|
6 |
+
import torch.utils.checkpoint
|
7 |
+
from packaging import version
|
8 |
+
from torch import nn
|
9 |
+
from torch.nn import CrossEntropyLoss
|
10 |
+
from transformers.activations import ACT2FN
|
11 |
+
from transformers.modeling_outputs import (
|
12 |
+
BaseModelOutputWithPast,
|
13 |
+
CausalLMOutputWithPast,
|
14 |
+
)
|
15 |
+
from transformers.modeling_utils import PreTrainedModel
|
16 |
+
from transformers.utils import logging
|
17 |
+
|
18 |
+
from .configuration_llama import CustomLlamaConfig
|
19 |
+
|
20 |
+
try:
|
21 |
+
from apex.megatron_layer_norm import MixedFusedLayerNorm as LayerNorm
|
22 |
+
except ImportError:
|
23 |
+
from torch.nn import LayerNorm
|
24 |
+
|
25 |
+
USE_FLASH_ATTN = False
|
26 |
+
try:
|
27 |
+
import flash_attn
|
28 |
+
if version.parse(flash_attn.__version__) >= version.parse("2.1.0"):
|
29 |
+
USE_FLASH_ATTN = True
|
30 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
31 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input
|
32 |
+
except ImportError:
|
33 |
+
pass
|
34 |
+
|
35 |
+
logger = logging.get_logger(__name__)
|
36 |
+
|
37 |
+
|
38 |
+
def _get_unpad_data(attention_mask):
|
39 |
+
seqlens_in_batch = (attention_mask).sum(dim=-1, dtype=torch.int32)
|
40 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
41 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
42 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0,
|
43 |
+
dtype=torch.torch.int32), (1, 0))
|
44 |
+
return (
|
45 |
+
indices,
|
46 |
+
cu_seqlens,
|
47 |
+
max_seqlen_in_batch,
|
48 |
+
)
|
49 |
+
|
50 |
+
|
51 |
+
class RMSNorm(torch.nn.Module):
|
52 |
+
def __init__(self, dim: int, eps: float = 1e-6):
|
53 |
+
"""
|
54 |
+
Initialize the RMSNorm normalization layer.
|
55 |
+
|
56 |
+
Args:
|
57 |
+
dim (int): The dimension of the input tensor.
|
58 |
+
eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.
|
59 |
+
|
60 |
+
Attributes:
|
61 |
+
eps (float): A small value added to the denominator for numerical stability.
|
62 |
+
weight (nn.Parameter): Learnable scaling parameter.
|
63 |
+
|
64 |
+
"""
|
65 |
+
super().__init__()
|
66 |
+
self.eps = eps
|
67 |
+
self.weight = nn.Parameter(torch.ones(dim))
|
68 |
+
|
69 |
+
def _norm(self, x):
|
70 |
+
"""
|
71 |
+
Apply the RMSNorm normalization to the input tensor.
|
72 |
+
|
73 |
+
Args:
|
74 |
+
x (torch.Tensor): The input tensor.
|
75 |
+
|
76 |
+
Returns:
|
77 |
+
torch.Tensor: The normalized tensor.
|
78 |
+
|
79 |
+
"""
|
80 |
+
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
81 |
+
|
82 |
+
def forward(self, x):
|
83 |
+
"""
|
84 |
+
Forward pass through the RMSNorm layer.
|
85 |
+
|
86 |
+
Args:
|
87 |
+
x (torch.Tensor): The input tensor.
|
88 |
+
|
89 |
+
Returns:
|
90 |
+
torch.Tensor: The output tensor after applying RMSNorm.
|
91 |
+
|
92 |
+
"""
|
93 |
+
output = self._norm(x.float()).type_as(x)
|
94 |
+
return output * self.weight
|
95 |
+
|
96 |
+
|
97 |
+
def get_norm(config: CustomLlamaConfig):
|
98 |
+
norm_type = config.norm_type
|
99 |
+
if norm_type == 'rms_norm':
|
100 |
+
return partial(RMSNorm, eps=config.layernorm_epsilon)
|
101 |
+
elif norm_type == 'layer_norm':
|
102 |
+
return partial(LayerNorm, eps=config.layernorm_epsilon)
|
103 |
+
else:
|
104 |
+
raise ValueError(f'Unsupported norm type: {norm_type}')
|
105 |
+
|
106 |
+
|
107 |
+
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
108 |
+
def _make_causal_mask(
|
109 |
+
input_ids_shape: torch.Size,
|
110 |
+
dtype: torch.dtype,
|
111 |
+
device: torch.device,
|
112 |
+
past_key_values_length: int = 0,
|
113 |
+
):
|
114 |
+
"""
|
115 |
+
Make causal mask used for bi-directional self-attention.
|
116 |
+
"""
|
117 |
+
bsz, tgt_len = input_ids_shape
|
118 |
+
mask = torch.full((tgt_len, tgt_len),
|
119 |
+
torch.finfo(dtype).min, device=device)
|
120 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
121 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
122 |
+
mask = mask.to(dtype)
|
123 |
+
|
124 |
+
if past_key_values_length > 0:
|
125 |
+
mask = torch.cat(
|
126 |
+
[
|
127 |
+
torch.zeros(
|
128 |
+
tgt_len, past_key_values_length, dtype=dtype, device=device
|
129 |
+
),
|
130 |
+
mask,
|
131 |
+
],
|
132 |
+
dim=-1,
|
133 |
+
)
|
134 |
+
return mask[None, None, :, :].expand(
|
135 |
+
bsz, 1, tgt_len, tgt_len + past_key_values_length
|
136 |
+
)
|
137 |
+
|
138 |
+
|
139 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
140 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
141 |
+
"""
|
142 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
143 |
+
"""
|
144 |
+
bsz, src_len = mask.size()
|
145 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
146 |
+
|
147 |
+
expanded_mask = mask[:, None, None, :].expand(
|
148 |
+
bsz, 1, tgt_len, src_len).to(dtype)
|
149 |
+
|
150 |
+
inverted_mask = 1.0 - expanded_mask
|
151 |
+
|
152 |
+
return inverted_mask.masked_fill(
|
153 |
+
inverted_mask.to(torch.bool), torch.finfo(dtype).min
|
154 |
+
)
|
155 |
+
|
156 |
+
|
157 |
+
class RotaryEmbedding(torch.nn.Module):
|
158 |
+
def __init__(self, dim, base=10000, compress=1.0):
|
159 |
+
super().__init__()
|
160 |
+
self.inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
|
161 |
+
self.seq_len_cached = 0
|
162 |
+
self.cos_cached = None
|
163 |
+
self.sin_cached = None
|
164 |
+
self.compress = compress
|
165 |
+
|
166 |
+
def forward(self, x, seq_len):
|
167 |
+
if seq_len > self.seq_len_cached:
|
168 |
+
self.seq_len_cached = seq_len
|
169 |
+
self.inv_freq = self.inv_freq.to(x.device)
|
170 |
+
t = (
|
171 |
+
torch.arange(seq_len, device=self.inv_freq.device,
|
172 |
+
dtype=self.inv_freq.dtype)
|
173 |
+
* self.compress
|
174 |
+
)
|
175 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
176 |
+
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
177 |
+
self.cos_cached = emb.cos()[None, None, :, :]
|
178 |
+
self.sin_cached = emb.sin()[None, None, :, :]
|
179 |
+
return self.cos_cached[:seq_len, ...], self.sin_cached[:seq_len, ...]
|
180 |
+
|
181 |
+
|
182 |
+
# rotary pos emb helpers:
|
183 |
+
|
184 |
+
|
185 |
+
def rotate_half(x):
|
186 |
+
x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2:]
|
187 |
+
return torch.cat((-x2, x1), dim=-1)
|
188 |
+
|
189 |
+
|
190 |
+
@torch.jit.script
|
191 |
+
def apply_rotary_pos_emb(q, k, cos, sin, offset: int = 0):
|
192 |
+
cos, sin = (
|
193 |
+
cos[..., offset: q.shape[-2] + offset, :],
|
194 |
+
sin[..., offset: q.shape[-2] + offset, :],
|
195 |
+
)
|
196 |
+
q_embed = (q.float() * cos) + (rotate_half(q.float()) * sin)
|
197 |
+
k_embed = (k.float() * cos) + (rotate_half(k.float()) * sin)
|
198 |
+
return q_embed.to(q.dtype), k_embed.to(k.dtype)
|
199 |
+
|
200 |
+
|
201 |
+
def apply_rotary_pos_emb_torch(
|
202 |
+
q, k, cos, sin, offset: int = 0
|
203 |
+
): # jitting fails with bf16
|
204 |
+
cos, sin = (
|
205 |
+
cos[..., offset: q.shape[-2] + offset, :],
|
206 |
+
sin[..., offset: q.shape[-2] + offset, :],
|
207 |
+
)
|
208 |
+
q_embed = (q.float() * cos) + (rotate_half(q.float()) * sin)
|
209 |
+
k_embed = (k.float() * cos) + (rotate_half(k.float()) * sin)
|
210 |
+
return q_embed.to(q.dtype), k_embed.to(k.dtype)
|
211 |
+
|
212 |
+
|
213 |
+
class CustomLlamaAttention(nn.Module):
|
214 |
+
def __init__(self, config: CustomLlamaConfig):
|
215 |
+
super().__init__()
|
216 |
+
self.num_attention_heads = config.num_attention_heads
|
217 |
+
self.num_kv_heads = config.num_kv_heads
|
218 |
+
self.hidden_size = config.hidden_size
|
219 |
+
self.head_size = self.hidden_size // self.num_attention_heads
|
220 |
+
self.rotary_ndims = int(self.head_size * config.rotary_pct)
|
221 |
+
self.max_positions = config.max_position_embeddings
|
222 |
+
self.rotary_emb = RotaryEmbedding(
|
223 |
+
self.rotary_ndims,
|
224 |
+
base=config.rotary_emb_base,
|
225 |
+
compress=config.rotary_compress,
|
226 |
+
)
|
227 |
+
self.norm_factor = torch.sqrt(
|
228 |
+
torch.tensor(self.head_size, dtype=torch.float32)
|
229 |
+
).to(torch.get_default_dtype())
|
230 |
+
|
231 |
+
if self.use_gqa:
|
232 |
+
self.query_dense = nn.Linear(
|
233 |
+
config.hidden_size,
|
234 |
+
config.hidden_size,
|
235 |
+
bias=getattr(config, "qkv_proj_bias", True)
|
236 |
+
)
|
237 |
+
self.key_value_dense = nn.Linear(
|
238 |
+
config.hidden_size,
|
239 |
+
self.head_size * 2 * config.num_kv_heads,
|
240 |
+
bias=getattr(config, "qkv_proj_bias", True),
|
241 |
+
)
|
242 |
+
else:
|
243 |
+
self.query_key_value = nn.Linear(
|
244 |
+
config.hidden_size,
|
245 |
+
3 * config.hidden_size,
|
246 |
+
bias=getattr(config, "qkv_proj_bias", True),
|
247 |
+
)
|
248 |
+
|
249 |
+
self.dense = nn.Linear(
|
250 |
+
config.hidden_size,
|
251 |
+
config.hidden_size,
|
252 |
+
bias=getattr(config, "out_proj_bias", True),
|
253 |
+
)
|
254 |
+
self.apply_rotary_fn = (
|
255 |
+
apply_rotary_pos_emb_torch
|
256 |
+
if config.torch_dtype == torch.bfloat16
|
257 |
+
else apply_rotary_pos_emb
|
258 |
+
)
|
259 |
+
|
260 |
+
@property
|
261 |
+
def use_gqa(self):
|
262 |
+
return self.num_kv_heads < self.num_attention_heads
|
263 |
+
|
264 |
+
def forward(
|
265 |
+
self,
|
266 |
+
hidden_states,
|
267 |
+
attention_mask,
|
268 |
+
head_mask=None,
|
269 |
+
layer_past=None,
|
270 |
+
use_cache=False,
|
271 |
+
output_attentions=False,
|
272 |
+
):
|
273 |
+
has_layer_past = layer_past is not None
|
274 |
+
|
275 |
+
if self.use_gqa:
|
276 |
+
# Compute Q
|
277 |
+
# [batch, seq_len, hidden_size] --> [batch_size, seq_len, (num_heads * head_size)]
|
278 |
+
q = self.query_dense(hidden_states)
|
279 |
+
|
280 |
+
# [batch_size, seq_len, (num_heads * head_size)]
|
281 |
+
# --> [batch, seq_len, num_attention_heads, head_size]
|
282 |
+
new_q_shape = q.size()[:-1] + \
|
283 |
+
(self.num_attention_heads, self.head_size)
|
284 |
+
q = q.view(*new_q_shape)
|
285 |
+
|
286 |
+
# Compute KV
|
287 |
+
# [batch, seq_len, hidden_size] --> [batch_size, seq_len, (num_attention_groups * 2 * head_size)]
|
288 |
+
kv = self.key_value_dense(hidden_states)
|
289 |
+
|
290 |
+
# [batch, seq_len, (num_attention_groups * 2 * head_size)]
|
291 |
+
# --> [batch, seq_len, num_attention_groups, 2 * head_size]
|
292 |
+
new_kv_shape = kv.size()[:-1] + (
|
293 |
+
self.num_kv_heads,
|
294 |
+
2 * self.head_size,
|
295 |
+
)
|
296 |
+
kv = kv.view(*new_kv_shape)
|
297 |
+
|
298 |
+
# [batch, num_attention_heads, seq_len, head_size]
|
299 |
+
query = q.permute(0, 2, 1, 3)
|
300 |
+
# [batch, num_attention_groups, seq_len, head_size]
|
301 |
+
key = kv[..., : self.head_size].permute(0, 2, 1, 3)
|
302 |
+
value = kv[..., self.head_size:].permute(0, 2, 1, 3)
|
303 |
+
else:
|
304 |
+
# Compute QKV
|
305 |
+
# Attention heads [batch, seq_len, hidden_size]
|
306 |
+
# --> [batch, seq_len, (np * 3 * head_size)]
|
307 |
+
qkv = self.query_key_value(hidden_states)
|
308 |
+
|
309 |
+
# [batch, seq_len, (num_heads * 3 * head_size)]
|
310 |
+
# --> [batch, seq_len, num_heads, 3 * head_size]
|
311 |
+
new_qkv_shape = qkv.size()[:-1] + (
|
312 |
+
self.num_attention_heads,
|
313 |
+
3 * self.head_size,
|
314 |
+
)
|
315 |
+
qkv = qkv.view(*new_qkv_shape)
|
316 |
+
|
317 |
+
# [batch, seq_len, num_attention_heads, 3 * head_size] --> 3 [batch, num_attention_heads, seq_len, head_size]
|
318 |
+
query = qkv[..., : self.head_size].permute(0, 2, 1, 3)
|
319 |
+
key = qkv[..., self.head_size: 2 *
|
320 |
+
self.head_size].permute(0, 2, 1, 3)
|
321 |
+
value = qkv[..., 2 * self.head_size:].permute(0, 2, 1, 3)
|
322 |
+
|
323 |
+
# Compute rotary embeddings on rotary_ndims
|
324 |
+
query_rot = query[..., : self.rotary_ndims]
|
325 |
+
query_pass = query[..., self.rotary_ndims:]
|
326 |
+
key_rot = key[..., : self.rotary_ndims]
|
327 |
+
key_pass = key[..., self.rotary_ndims:]
|
328 |
+
|
329 |
+
# Compute token offset for rotary embeddings (when decoding)
|
330 |
+
seq_len = key.shape[-2]
|
331 |
+
offset = 0
|
332 |
+
if has_layer_past:
|
333 |
+
offset = layer_past[0].shape[-2]
|
334 |
+
seq_len += offset
|
335 |
+
cos, sin = self.rotary_emb(value, seq_len=seq_len)
|
336 |
+
query, key = self.apply_rotary_fn(
|
337 |
+
query_rot, key_rot, cos, sin, offset=offset)
|
338 |
+
query = torch.cat((query, query_pass), dim=-1)
|
339 |
+
key = torch.cat((key, key_pass), dim=-1)
|
340 |
+
|
341 |
+
# Cache QKV values
|
342 |
+
if has_layer_past:
|
343 |
+
past_key = layer_past[0]
|
344 |
+
past_value = layer_past[1]
|
345 |
+
key = torch.cat((past_key, key), dim=-2)
|
346 |
+
value = torch.cat((past_value, value), dim=-2)
|
347 |
+
present = (key, value) if use_cache else None
|
348 |
+
|
349 |
+
if USE_FLASH_ATTN:
|
350 |
+
# Compute attention
|
351 |
+
attn_output, attn_weights = self._flash_attn(
|
352 |
+
query, key, value, attention_mask, head_mask
|
353 |
+
)
|
354 |
+
|
355 |
+
# from [batch_size, ]
|
356 |
+
attn_output = attn_output.reshape(
|
357 |
+
attn_output.size(0), attn_output.size(1), self.hidden_size).contiguous()
|
358 |
+
else:
|
359 |
+
# Compute attention
|
360 |
+
attn_output, attn_weights = self._attn(
|
361 |
+
query, key, value, attention_mask, head_mask
|
362 |
+
)
|
363 |
+
|
364 |
+
# Reshape outputs
|
365 |
+
attn_output = self._merge_heads(
|
366 |
+
attn_output, self.num_attention_heads, self.head_size
|
367 |
+
)
|
368 |
+
attn_output = self.dense(attn_output)
|
369 |
+
|
370 |
+
outputs = (attn_output, present)
|
371 |
+
if output_attentions:
|
372 |
+
outputs += (attn_weights,)
|
373 |
+
|
374 |
+
return outputs
|
375 |
+
|
376 |
+
@classmethod
|
377 |
+
def _split_heads(cls, tensor, num_attention_heads, attn_head_size):
|
378 |
+
"""
|
379 |
+
Splits hidden dim into attn_head_size and num_attention_heads
|
380 |
+
"""
|
381 |
+
# tensor: [bs, seq_len, hidden_size]
|
382 |
+
new_shape = tensor.size()[:-1] + (num_attention_heads, attn_head_size)
|
383 |
+
# -> [bs, seq_len, num_attention_heads, attn_head_size]
|
384 |
+
tensor = tensor.view(new_shape)
|
385 |
+
# -> [bs, num_attention_heads, seq_len, attn_head_size]
|
386 |
+
tensor = tensor.permute(0, 2, 1, 3)
|
387 |
+
return tensor
|
388 |
+
|
389 |
+
@classmethod
|
390 |
+
def _merge_heads(cls, tensor, num_attention_heads, attn_head_size):
|
391 |
+
"""
|
392 |
+
Merges attn_head_size dim and num_attn_heads dim into hidden dim
|
393 |
+
"""
|
394 |
+
# tensor [bs, num_attention_heads, seq_len, attn_head_size]
|
395 |
+
tensor = tensor.permute(0, 2, 1, 3).contiguous()
|
396 |
+
# -> [bs, seq_len, num_attention_heads, attn_head_size]
|
397 |
+
tensor = tensor.view(
|
398 |
+
tensor.size(0), tensor.size(
|
399 |
+
1), num_attention_heads * attn_head_size
|
400 |
+
)
|
401 |
+
# -> [bs, seq_len, hidden_size]
|
402 |
+
return tensor
|
403 |
+
|
404 |
+
def _attn(self, query, key, value, attention_mask=None, head_mask=None):
|
405 |
+
# q: [bs, num_attention_heads, seq_len, attn_head_size]
|
406 |
+
# k,v: [bs, num_attention_groups, seq_len, attn_head_size]
|
407 |
+
# compute causal mask from causal mask buffer
|
408 |
+
batch_size, num_attention_heads, query_length, attn_head_size = query.size()
|
409 |
+
_, num_attention_groups, key_length, _ = key.size()
|
410 |
+
|
411 |
+
group_size = num_attention_heads // num_attention_groups
|
412 |
+
|
413 |
+
if not self.use_gqa:
|
414 |
+
assert group_size == 1
|
415 |
+
|
416 |
+
# repeat key and value, so we can use normal MHA algorithm
|
417 |
+
key = (
|
418 |
+
key.view(batch_size, num_attention_groups,
|
419 |
+
1, key_length, attn_head_size)
|
420 |
+
.repeat(1, 1, group_size, 1, 1)
|
421 |
+
.view(batch_size, num_attention_heads, key_length, attn_head_size)
|
422 |
+
)
|
423 |
+
value = (
|
424 |
+
value.view(batch_size, num_attention_groups,
|
425 |
+
1, key_length, attn_head_size)
|
426 |
+
.repeat(1, 1, group_size, 1, 1)
|
427 |
+
.view(batch_size, num_attention_heads, key_length, attn_head_size)
|
428 |
+
)
|
429 |
+
|
430 |
+
query = query.view(
|
431 |
+
batch_size * num_attention_heads, query_length, attn_head_size
|
432 |
+
)
|
433 |
+
key = key.view(batch_size * num_attention_heads,
|
434 |
+
key_length, attn_head_size)
|
435 |
+
attn_scores = torch.zeros(
|
436 |
+
batch_size * num_attention_heads,
|
437 |
+
query_length,
|
438 |
+
key_length,
|
439 |
+
dtype=query.dtype,
|
440 |
+
device=key.device,
|
441 |
+
)
|
442 |
+
attn_scores = torch.baddbmm(
|
443 |
+
attn_scores,
|
444 |
+
query,
|
445 |
+
key.transpose(1, 2),
|
446 |
+
beta=1.0,
|
447 |
+
alpha=(
|
448 |
+
torch.tensor(
|
449 |
+
1.0, dtype=self.norm_factor.dtype, device=self.norm_factor.device
|
450 |
+
)
|
451 |
+
/ self.norm_factor
|
452 |
+
),
|
453 |
+
)
|
454 |
+
attn_scores = attn_scores.view(
|
455 |
+
batch_size, num_attention_heads, query_length, key_length
|
456 |
+
)
|
457 |
+
|
458 |
+
mask_value = torch.finfo(attn_scores.dtype).min
|
459 |
+
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
|
460 |
+
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
|
461 |
+
mask_value = torch.tensor(mask_value, dtype=attn_scores.dtype).to(
|
462 |
+
attn_scores.device
|
463 |
+
)
|
464 |
+
|
465 |
+
if attention_mask is not None:
|
466 |
+
# Apply the attention mask
|
467 |
+
attn_scores = attn_scores + attention_mask
|
468 |
+
|
469 |
+
attn_weights = nn.functional.softmax(attn_scores, dim=-1)
|
470 |
+
attn_weights = attn_weights.to(value.dtype)
|
471 |
+
|
472 |
+
# Mask heads if we want to
|
473 |
+
if head_mask is not None:
|
474 |
+
attn_weights = attn_weights * head_mask
|
475 |
+
|
476 |
+
attn_output = torch.matmul(attn_weights, value)
|
477 |
+
return attn_output, attn_weights
|
478 |
+
|
479 |
+
def _flash_attn(self, query, key, value, attention_mask=None, head_mask=None):
|
480 |
+
assert head_mask is None, "head_mask is not supported in _flash_attn"
|
481 |
+
# q: [bs, num_attention_heads, seq_len, attn_head_size]
|
482 |
+
# k,v: [bs, num_attention_groups, seq_len, attn_head_size]
|
483 |
+
|
484 |
+
# flash_attn need the layout to be [batch_size, sequence_length, num_heads, head_dim]
|
485 |
+
query = query.transpose(1, 2)
|
486 |
+
key = key.transpose(1, 2)
|
487 |
+
value = value.transpose(1, 2)
|
488 |
+
|
489 |
+
query_length = query.size(1)
|
490 |
+
causal = query_length != 1
|
491 |
+
|
492 |
+
if attention_mask is not None:
|
493 |
+
batch_size = query.size(0)
|
494 |
+
query, key, value, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
495 |
+
query, key, value, attention_mask, query_length
|
496 |
+
)
|
497 |
+
|
498 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
499 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
500 |
+
|
501 |
+
attn_output_unpad = flash_attn_varlen_func(
|
502 |
+
query,
|
503 |
+
key,
|
504 |
+
value,
|
505 |
+
cu_seqlens_q=cu_seqlens_q,
|
506 |
+
cu_seqlens_k=cu_seqlens_k,
|
507 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
508 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
509 |
+
dropout_p=0,
|
510 |
+
causal=causal,
|
511 |
+
)
|
512 |
+
|
513 |
+
attn_output = pad_input(
|
514 |
+
attn_output_unpad, indices_q, batch_size, query_length)
|
515 |
+
else:
|
516 |
+
attn_output = flash_attn_func(
|
517 |
+
query, key, value, 0, causal=causal
|
518 |
+
)
|
519 |
+
|
520 |
+
return attn_output, None
|
521 |
+
|
522 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
523 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(
|
524 |
+
attention_mask)
|
525 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
526 |
+
num_attention_heads = query_layer.shape[2]
|
527 |
+
|
528 |
+
key_layer = index_first_axis(
|
529 |
+
key_layer.reshape(batch_size * kv_seq_len,
|
530 |
+
num_key_value_heads, head_dim), indices_k
|
531 |
+
)
|
532 |
+
value_layer = index_first_axis(
|
533 |
+
value_layer.reshape(batch_size * kv_seq_len,
|
534 |
+
num_key_value_heads, head_dim), indices_k
|
535 |
+
)
|
536 |
+
if query_length == kv_seq_len:
|
537 |
+
query_layer = index_first_axis(
|
538 |
+
query_layer.reshape(batch_size * kv_seq_len,
|
539 |
+
num_attention_heads, head_dim), indices_k
|
540 |
+
)
|
541 |
+
cu_seqlens_q = cu_seqlens_k
|
542 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
543 |
+
indices_q = indices_k
|
544 |
+
elif query_length == 1:
|
545 |
+
max_seqlen_in_batch_q = 1
|
546 |
+
cu_seqlens_q = torch.arange(
|
547 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
548 |
+
) # There is a memcpy here, that is very bad.
|
549 |
+
indices_q = cu_seqlens_q[:-1]
|
550 |
+
query_layer = query_layer.squeeze(1)
|
551 |
+
else:
|
552 |
+
# The -q_len: slice assumes left padding.
|
553 |
+
attention_mask = attention_mask[:, -query_length:]
|
554 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
|
555 |
+
query_layer, attention_mask)
|
556 |
+
|
557 |
+
return (
|
558 |
+
query_layer,
|
559 |
+
key_layer,
|
560 |
+
value_layer,
|
561 |
+
indices_q,
|
562 |
+
(cu_seqlens_q, cu_seqlens_k),
|
563 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
564 |
+
)
|
565 |
+
|
566 |
+
|
567 |
+
def swiglu(x):
|
568 |
+
x1, x2 = x.chunk(2, dim=(x.ndim - 1))
|
569 |
+
return x1 * torch.nn.functional.silu(x2)
|
570 |
+
|
571 |
+
|
572 |
+
def get_activation(act_name: str):
|
573 |
+
if act_name == "gelu":
|
574 |
+
return ACT2FN["gelu_new"]
|
575 |
+
elif act_name == "swiglu":
|
576 |
+
return swiglu
|
577 |
+
else:
|
578 |
+
return ACT2FN[act_name]
|
579 |
+
|
580 |
+
|
581 |
+
class CustomLlamaMLP(nn.Module):
|
582 |
+
def __init__(self, config):
|
583 |
+
super().__init__()
|
584 |
+
h_to_4h_out_channels = (
|
585 |
+
config.ffn_hidden_size * 2
|
586 |
+
if config.hidden_act == "swiglu"
|
587 |
+
else config.ffn_hidden_size
|
588 |
+
)
|
589 |
+
self.dense_h_to_4h = nn.Linear(
|
590 |
+
config.hidden_size,
|
591 |
+
h_to_4h_out_channels,
|
592 |
+
bias=getattr(config, "mlp_fc1_bias", True)
|
593 |
+
)
|
594 |
+
self.dense_4h_to_h = nn.Linear(
|
595 |
+
config.ffn_hidden_size,
|
596 |
+
config.hidden_size,
|
597 |
+
bias=getattr(config, "mlp_fc2_bias", True)
|
598 |
+
)
|
599 |
+
self.act = get_activation(config.hidden_act)
|
600 |
+
|
601 |
+
def forward(self, hidden_states):
|
602 |
+
hidden_states = self.dense_h_to_4h(hidden_states)
|
603 |
+
hidden_states = self.act(hidden_states)
|
604 |
+
hidden_states = self.dense_4h_to_h(hidden_states)
|
605 |
+
return hidden_states
|
606 |
+
|
607 |
+
|
608 |
+
class CustomLlamaLayer(nn.Module):
|
609 |
+
def __init__(self, config):
|
610 |
+
super().__init__()
|
611 |
+
|
612 |
+
norm_func = get_norm(config)
|
613 |
+
self.input_layernorm = norm_func(config.hidden_size)
|
614 |
+
self.post_attention_layernorm = norm_func(config.hidden_size)
|
615 |
+
self.attention = CustomLlamaAttention(config)
|
616 |
+
self.mlp = CustomLlamaMLP(config)
|
617 |
+
|
618 |
+
def forward(
|
619 |
+
self,
|
620 |
+
hidden_states,
|
621 |
+
attention_mask=None,
|
622 |
+
head_mask=None,
|
623 |
+
use_cache=False,
|
624 |
+
layer_past=None,
|
625 |
+
output_attentions=False,
|
626 |
+
):
|
627 |
+
attn_in = self.input_layernorm(hidden_states)
|
628 |
+
attention_layer_outputs = self.attention(
|
629 |
+
attn_in,
|
630 |
+
attention_mask=attention_mask,
|
631 |
+
layer_past=layer_past,
|
632 |
+
head_mask=head_mask,
|
633 |
+
use_cache=use_cache,
|
634 |
+
output_attentions=output_attentions,
|
635 |
+
)
|
636 |
+
attn_output = attention_layer_outputs[
|
637 |
+
0
|
638 |
+
] # output_attn: attn_output, present, (attn_weights)
|
639 |
+
outputs = attention_layer_outputs[1:]
|
640 |
+
# pseudocode:
|
641 |
+
# x = x + attn(ln1(x))
|
642 |
+
# x = x + mlp(ln2(x))
|
643 |
+
attn_output = attn_output + hidden_states
|
644 |
+
mlp_input = self.post_attention_layernorm(attn_output)
|
645 |
+
mlp_output = self.mlp(mlp_input)
|
646 |
+
hidden_states = mlp_output + attn_output
|
647 |
+
|
648 |
+
if use_cache:
|
649 |
+
outputs = (
|
650 |
+
hidden_states,
|
651 |
+
) + outputs # hidden_states, present, (attn_weights)
|
652 |
+
else:
|
653 |
+
# hidden_states, (attn_weights)
|
654 |
+
outputs = (hidden_states,) + outputs[1:]
|
655 |
+
|
656 |
+
return outputs
|
657 |
+
|
658 |
+
|
659 |
+
class CustomLlamaPreTrainedModel(PreTrainedModel):
|
660 |
+
config_class = CustomLlamaConfig
|
661 |
+
base_model_prefix = "lm"
|
662 |
+
_no_split_modules = ["CustomLlamaLayer"]
|
663 |
+
|
664 |
+
|
665 |
+
class CustomLlamaModel(CustomLlamaPreTrainedModel):
|
666 |
+
def __init__(self, config):
|
667 |
+
super().__init__(config)
|
668 |
+
self.config = config
|
669 |
+
|
670 |
+
self.embed_in = nn.Embedding(config.vocab_size, config.hidden_size)
|
671 |
+
self.layers = nn.ModuleList(
|
672 |
+
[CustomLlamaLayer(config) for _ in range(config.num_layers)]
|
673 |
+
)
|
674 |
+
|
675 |
+
norm_func = get_norm(config)
|
676 |
+
self.final_layer_norm = norm_func(config.hidden_size)
|
677 |
+
# Initialize weights and apply final processing
|
678 |
+
self.post_init()
|
679 |
+
|
680 |
+
def get_input_embeddings(self):
|
681 |
+
return self.embed_in
|
682 |
+
|
683 |
+
def set_input_embeddings(self, value):
|
684 |
+
self.embed_in = value
|
685 |
+
|
686 |
+
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
|
687 |
+
def _prepare_decoder_attention_mask(
|
688 |
+
self, attention_mask, input_shape, inputs_embeds, past_key_values_length
|
689 |
+
):
|
690 |
+
# create causal mask
|
691 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
692 |
+
combined_attention_mask = None
|
693 |
+
if input_shape[-1] > 1:
|
694 |
+
combined_attention_mask = _make_causal_mask(
|
695 |
+
input_shape,
|
696 |
+
inputs_embeds.dtype,
|
697 |
+
device=inputs_embeds.device,
|
698 |
+
past_key_values_length=past_key_values_length,
|
699 |
+
)
|
700 |
+
|
701 |
+
if attention_mask is not None:
|
702 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
703 |
+
expanded_attn_mask = _expand_mask(
|
704 |
+
attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
|
705 |
+
).to(inputs_embeds.device)
|
706 |
+
combined_attention_mask = (
|
707 |
+
expanded_attn_mask
|
708 |
+
if combined_attention_mask is None
|
709 |
+
else expanded_attn_mask + combined_attention_mask
|
710 |
+
)
|
711 |
+
|
712 |
+
return combined_attention_mask
|
713 |
+
|
714 |
+
def forward(
|
715 |
+
self,
|
716 |
+
input_ids: Optional[torch.LongTensor] = None,
|
717 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
718 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
719 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
720 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
721 |
+
use_cache: Optional[bool] = None,
|
722 |
+
output_attentions: Optional[bool] = None,
|
723 |
+
output_hidden_states: Optional[bool] = None,
|
724 |
+
return_dict: Optional[bool] = None,
|
725 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
726 |
+
r"""
|
727 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
728 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
729 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
730 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
731 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
732 |
+
use_cache (`bool`, *optional*):
|
733 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
734 |
+
`past_key_values`).
|
735 |
+
"""
|
736 |
+
output_attentions = (
|
737 |
+
output_attentions
|
738 |
+
if output_attentions is not None
|
739 |
+
else self.config.output_attentions
|
740 |
+
)
|
741 |
+
output_hidden_states = (
|
742 |
+
output_hidden_states
|
743 |
+
if output_hidden_states is not None
|
744 |
+
else self.config.output_hidden_states
|
745 |
+
)
|
746 |
+
return_dict = (
|
747 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
748 |
+
)
|
749 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
750 |
+
|
751 |
+
if input_ids is not None and inputs_embeds is not None:
|
752 |
+
raise ValueError(
|
753 |
+
"You cannot specify both input_ids and inputs_embeds at the same time"
|
754 |
+
)
|
755 |
+
elif input_ids is not None:
|
756 |
+
input_shape = input_ids.size()
|
757 |
+
elif inputs_embeds is not None:
|
758 |
+
input_shape = inputs_embeds.size()[:-1]
|
759 |
+
else:
|
760 |
+
raise ValueError(
|
761 |
+
"You have to specify either input_ids or inputs_embeds")
|
762 |
+
|
763 |
+
batch_size, seq_length = input_shape
|
764 |
+
seq_length_with_past = seq_length
|
765 |
+
past_key_values_length = 0
|
766 |
+
|
767 |
+
if past_key_values is not None:
|
768 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
769 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
770 |
+
else:
|
771 |
+
past_key_values = tuple([None] * self.config.num_layers)
|
772 |
+
|
773 |
+
if inputs_embeds is None:
|
774 |
+
inputs_embeds = self.embed_in(input_ids)
|
775 |
+
# Attention mask.
|
776 |
+
if attention_mask is None:
|
777 |
+
attention_mask = torch.ones(
|
778 |
+
(batch_size, seq_length_with_past),
|
779 |
+
dtype=torch.bool,
|
780 |
+
device=inputs_embeds.device,
|
781 |
+
)
|
782 |
+
|
783 |
+
# Prepare head mask if needed
|
784 |
+
# 1.0 in head_mask indicate we keep the head
|
785 |
+
# attention_probs has shape bsz x n_heads x N x N
|
786 |
+
# input head_mask has shape [num_heads] or [num_layers x num_heads]
|
787 |
+
# and head_mask is converted to shape [num_layers x batch x num_heads x seq_length x seq_length]
|
788 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
|
789 |
+
|
790 |
+
if USE_FLASH_ATTN:
|
791 |
+
attention_mask = attention_mask if (
|
792 |
+
attention_mask is not None and 0 in attention_mask) else None
|
793 |
+
else:
|
794 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
795 |
+
attention_mask,
|
796 |
+
(batch_size, seq_length),
|
797 |
+
inputs_embeds,
|
798 |
+
past_key_values_length,
|
799 |
+
)
|
800 |
+
|
801 |
+
hidden_states = inputs_embeds
|
802 |
+
presents = () if use_cache else None
|
803 |
+
all_attentions = () if output_attentions else None
|
804 |
+
all_hidden_states = () if output_hidden_states else None
|
805 |
+
for i, (layer, layer_past) in enumerate(zip(self.layers, past_key_values)):
|
806 |
+
if output_hidden_states:
|
807 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
808 |
+
outputs = layer(
|
809 |
+
hidden_states,
|
810 |
+
attention_mask=attention_mask,
|
811 |
+
head_mask=head_mask[i],
|
812 |
+
layer_past=layer_past,
|
813 |
+
use_cache=use_cache,
|
814 |
+
output_attentions=output_attentions,
|
815 |
+
)
|
816 |
+
hidden_states = outputs[0]
|
817 |
+
if use_cache is True:
|
818 |
+
presents = presents + (outputs[1],)
|
819 |
+
if output_attentions:
|
820 |
+
all_attentions = all_attentions + \
|
821 |
+
(outputs[2 if use_cache else 1],)
|
822 |
+
|
823 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
824 |
+
# Add last hidden state
|
825 |
+
if output_hidden_states:
|
826 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
827 |
+
|
828 |
+
if not return_dict:
|
829 |
+
return tuple(
|
830 |
+
v
|
831 |
+
for v in [hidden_states, presents, all_hidden_states, all_attentions]
|
832 |
+
if v is not None
|
833 |
+
)
|
834 |
+
|
835 |
+
return BaseModelOutputWithPast(
|
836 |
+
last_hidden_state=hidden_states,
|
837 |
+
past_key_values=presents,
|
838 |
+
hidden_states=all_hidden_states,
|
839 |
+
attentions=all_attentions,
|
840 |
+
)
|
841 |
+
|
842 |
+
|
843 |
+
class CustomLlamaForCausalLM(CustomLlamaPreTrainedModel):
|
844 |
+
_tied_weights_keys = ["embed_out.weight"]
|
845 |
+
_keys_to_ignore_on_load_unexpected = [
|
846 |
+
r"lm.layers.\d+.attention.rotary_emb.inv_freq"
|
847 |
+
]
|
848 |
+
|
849 |
+
def __init__(self, config):
|
850 |
+
super().__init__(config)
|
851 |
+
|
852 |
+
self.lm = CustomLlamaModel(config)
|
853 |
+
self.embed_out = nn.Linear(
|
854 |
+
config.hidden_size, config.vocab_size, bias=False)
|
855 |
+
|
856 |
+
# Initialize weights and apply final processing
|
857 |
+
self.post_init()
|
858 |
+
|
859 |
+
def get_output_embeddings(self):
|
860 |
+
return self.embed_out
|
861 |
+
|
862 |
+
def set_output_embeddings(self, new_embeddings):
|
863 |
+
self.embed_out = new_embeddings
|
864 |
+
|
865 |
+
def forward(
|
866 |
+
self,
|
867 |
+
input_ids: Optional[torch.LongTensor] = None,
|
868 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
869 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
870 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
871 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
872 |
+
labels: Optional[torch.LongTensor] = None,
|
873 |
+
use_cache: Optional[bool] = None,
|
874 |
+
output_attentions: Optional[bool] = None,
|
875 |
+
output_hidden_states: Optional[bool] = None,
|
876 |
+
return_dict: Optional[bool] = None,
|
877 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
878 |
+
r"""
|
879 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
880 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
881 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
882 |
+
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional tensors are
|
883 |
+
only required when the model is used as a decoder in a Sequence to Sequence model.
|
884 |
+
|
885 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks that can be used (see
|
886 |
+
`past_key_values` input) to speed up sequential decoding.
|
887 |
+
|
888 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
889 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
890 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
891 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
892 |
+
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
|
893 |
+
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
|
894 |
+
ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`.
|
895 |
+
use_cache (`bool`, *optional*):
|
896 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
897 |
+
`past_key_values`).
|
898 |
+
|
899 |
+
```"""
|
900 |
+
return_dict = (
|
901 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
902 |
+
)
|
903 |
+
|
904 |
+
outputs = self.lm(
|
905 |
+
input_ids,
|
906 |
+
attention_mask=attention_mask,
|
907 |
+
head_mask=head_mask,
|
908 |
+
inputs_embeds=inputs_embeds,
|
909 |
+
past_key_values=past_key_values,
|
910 |
+
use_cache=use_cache,
|
911 |
+
output_attentions=output_attentions,
|
912 |
+
output_hidden_states=output_hidden_states,
|
913 |
+
return_dict=return_dict,
|
914 |
+
)
|
915 |
+
|
916 |
+
hidden_states = outputs[0]
|
917 |
+
lm_logits = self.embed_out(hidden_states)
|
918 |
+
|
919 |
+
lm_loss = None
|
920 |
+
if labels is not None:
|
921 |
+
# we are doing next-token prediction; shift prediction scores and input ids by one
|
922 |
+
shift_logits = lm_logits[:, :-1, :].contiguous()
|
923 |
+
labels = labels[:, 1:].contiguous()
|
924 |
+
loss_fct = CrossEntropyLoss()
|
925 |
+
lm_loss = loss_fct(
|
926 |
+
shift_logits.view(-1, shift_logits.size(-1)), labels.view(-1)
|
927 |
+
)
|
928 |
+
|
929 |
+
if not return_dict:
|
930 |
+
output = (lm_logits,) + outputs[1:]
|
931 |
+
return ((lm_loss,) + output) if lm_loss is not None else output
|
932 |
+
|
933 |
+
return CausalLMOutputWithPast(
|
934 |
+
loss=lm_loss,
|
935 |
+
logits=lm_logits,
|
936 |
+
past_key_values=outputs.past_key_values,
|
937 |
+
hidden_states=outputs.hidden_states,
|
938 |
+
attentions=outputs.attentions,
|
939 |
+
)
|
940 |
+
|
941 |
+
def prepare_inputs_for_generation(
|
942 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **model_kwargs
|
943 |
+
):
|
944 |
+
input_shape = input_ids.shape
|
945 |
+
|
946 |
+
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
947 |
+
if attention_mask is None:
|
948 |
+
attention_mask = input_ids.new_ones(input_shape)
|
949 |
+
|
950 |
+
# cut decoder_input_ids if past is used
|
951 |
+
if past_key_values and past_key_values[0] is not None:
|
952 |
+
input_ids = input_ids[:, -1:]
|
953 |
+
|
954 |
+
if inputs_embeds is not None and past_key_values is None:
|
955 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
956 |
+
else:
|
957 |
+
model_inputs = {"input_ids": input_ids}
|
958 |
+
|
959 |
+
model_inputs.update(
|
960 |
+
{
|
961 |
+
"attention_mask": attention_mask,
|
962 |
+
"past_key_values": past_key_values
|
963 |
+
}
|
964 |
+
)
|
965 |
+
|
966 |
+
return model_inputs
|
967 |
+
|
968 |
+
def _reorder_cache(self, past_key_values, beam_idx):
|
969 |
+
reordered_past = ()
|
970 |
+
for layer_past in past_key_values:
|
971 |
+
reordered_past += (
|
972 |
+
tuple(
|
973 |
+
past_state.index_select(0, beam_idx)
|
974 |
+
for past_state in layer_past[:2]
|
975 |
+
)
|
976 |
+
+ layer_past[2:],
|
977 |
+
)
|
978 |
+
return reordered_past
|
modeling_points_chat.py
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional, Tuple
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
5 |
+
from torch import nn
|
6 |
+
from transformers import (
|
7 |
+
CLIPVisionModel,
|
8 |
+
GenerationMixin,
|
9 |
+
PreTrainedModel,
|
10 |
+
PreTrainedTokenizer,
|
11 |
+
)
|
12 |
+
|
13 |
+
from .catty import split_image_with_catty
|
14 |
+
from .configuration_points_chat import POINTSChatConfig
|
15 |
+
from .dynamic_high_resolution import split_image
|
16 |
+
from .modeling_llama import CustomLlamaForCausalLM
|
17 |
+
|
18 |
+
|
19 |
+
class POINTSChatModel(PreTrainedModel, GenerationMixin):
|
20 |
+
config_class = POINTSChatConfig
|
21 |
+
_no_split_modules = ["CLIPVisionModel", "LLamaDecoderLayer"]
|
22 |
+
"""Chat model for POINTS.
|
23 |
+
|
24 |
+
Official implementation of the paper "POINTS: Improving Your Vision-language Model with Affordable Strategies" # noqa: E501
|
25 |
+
paper: https://huggingface.co/papers/2409.04828
|
26 |
+
|
27 |
+
Args:
|
28 |
+
config (PretrainedConfig): The model config.
|
29 |
+
"""
|
30 |
+
|
31 |
+
def __init__(self, config: POINTSChatConfig) -> None:
|
32 |
+
super().__init__(config)
|
33 |
+
self.general_vit = CLIPVisionModel(config.vision_config)
|
34 |
+
self.ocr_vit = CLIPVisionModel(config.vision_config)
|
35 |
+
self.llm = CustomLlamaForCausalLM(config.llm_config)
|
36 |
+
self.vision_projector = nn.Sequential(
|
37 |
+
nn.Linear(config.vision_config.hidden_size *
|
38 |
+
4, config.llm_config.hidden_size),
|
39 |
+
nn.GELU(),
|
40 |
+
nn.Linear(config.llm_config.hidden_size,
|
41 |
+
config.llm_config.hidden_size)
|
42 |
+
|
43 |
+
)
|
44 |
+
|
45 |
+
def apply_chat_template(self, prompt: str, image_num: int) -> str:
|
46 |
+
"""Apply the Yi-1.5-Chat template to the prompt.
|
47 |
+
|
48 |
+
Args:
|
49 |
+
prompt (str): The prompt to apply the template to.
|
50 |
+
image_num (int): The number of the image in the prompt.
|
51 |
+
Returns:
|
52 |
+
str: The prompt with the template applied.
|
53 |
+
"""
|
54 |
+
image_tokens = ('<|endoftext|>' * 144) * image_num
|
55 |
+
prompt = f'<|im_start|>user\n{image_tokens}{prompt}<|im_end|>\n<|im_start|>assistant\n' # noqa: E501
|
56 |
+
return prompt
|
57 |
+
|
58 |
+
def pixel_shuffle(self, feature_map: torch.Tensor,
|
59 |
+
scale_factor: float = 0.5) -> torch.Tensor:
|
60 |
+
"""Implementation of pixel shuffle.
|
61 |
+
|
62 |
+
Merge several patches into a single patch by concatenating
|
63 |
+
them across the channel dimension. Therefore, we can reduce
|
64 |
+
the image sequence length. In POINTS, we merge 2x2 adjacent
|
65 |
+
patches into a single patch.
|
66 |
+
|
67 |
+
Args:
|
68 |
+
feature_map (torch.Tensor): The feature map to be pixel
|
69 |
+
shuffled.
|
70 |
+
scale_factor (float, optional): The scale factor for the
|
71 |
+
"""
|
72 |
+
|
73 |
+
# taken from https://huggingface.co/OpenGVLab/InternVL-Chat-V1-5/blob/main/modeling_internvl_chat.py#L187 # noqa
|
74 |
+
n, w, h, c = feature_map.size()
|
75 |
+
# N, W, H, C --> N, W, H * scale, C // scale
|
76 |
+
feature_map = feature_map.view(
|
77 |
+
n, w, int(h * scale_factor), int(c / scale_factor))
|
78 |
+
# N, W, H * scale, C // scale --> N, H * scale, W, C // scale
|
79 |
+
feature_map = feature_map.permute(0, 2, 1, 3).contiguous()
|
80 |
+
# N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
|
81 |
+
feature_map = feature_map.view(
|
82 |
+
n,
|
83 |
+
int(h * scale_factor),
|
84 |
+
int(w * scale_factor),
|
85 |
+
int(c / (scale_factor * scale_factor)),
|
86 |
+
)
|
87 |
+
feature_map = feature_map.permute(0, 2, 1, 3).contiguous()
|
88 |
+
return feature_map
|
89 |
+
|
90 |
+
def extract_image_features(self, images: torch.Tensor,
|
91 |
+
vision_encoder: str = 'general_vit') -> torch.Tensor: # noqa: E501
|
92 |
+
"""Extract the image features from the vision encoder.
|
93 |
+
|
94 |
+
Args:
|
95 |
+
images (torch.Tensor): The images to extract the features from.
|
96 |
+
vision_encoder (str, optional): The vision encoder to use.
|
97 |
+
Defaults to 'general_vit'.
|
98 |
+
|
99 |
+
Returns:
|
100 |
+
torch.Tensor: The extracted image features.
|
101 |
+
"""
|
102 |
+
if vision_encoder == 'general_vit':
|
103 |
+
image_features = self.general_vit(
|
104 |
+
images, output_hidden_states=True
|
105 |
+
)
|
106 |
+
else:
|
107 |
+
image_features = self.ocr_vit(
|
108 |
+
images, output_hidden_states=True
|
109 |
+
)
|
110 |
+
image_features = image_features.hidden_states[-2]
|
111 |
+
image_features = image_features[:, 1:]
|
112 |
+
image_features = image_features.reshape(-1, 24, 24, 1024)
|
113 |
+
image_features = self.pixel_shuffle(image_features, 0.5)
|
114 |
+
image_features = image_features.view(-1, 144, 4096)
|
115 |
+
image_features = self.vision_projector(image_features)
|
116 |
+
return image_features
|
117 |
+
|
118 |
+
def get_pos_mapping(self, pos: List[list]) -> Tuple[dict, int]:
|
119 |
+
"""Get the position mapping for the images.
|
120 |
+
|
121 |
+
Args:
|
122 |
+
pos (List[list]): The position of the images in the prompt.
|
123 |
+
|
124 |
+
Returns:
|
125 |
+
Tuple[dict, int]: The position mapping and the
|
126 |
+
total number of images.
|
127 |
+
"""
|
128 |
+
mapping = {}
|
129 |
+
total_images = 0
|
130 |
+
for i, (start, end) in enumerate(pos):
|
131 |
+
num_image = int((end - start) / 144)
|
132 |
+
mapping[i] = num_image
|
133 |
+
total_images += num_image
|
134 |
+
return mapping, total_images
|
135 |
+
|
136 |
+
@torch.no_grad()
|
137 |
+
def chat(self, pixel_values: Image, prompt: str,
|
138 |
+
tokenizer: PreTrainedTokenizer,
|
139 |
+
image_processor, catty: bool = True,
|
140 |
+
generation_config: dict = None,
|
141 |
+
max_splits: int = 8) -> str:
|
142 |
+
"""Generate a response to the input prompt.
|
143 |
+
|
144 |
+
Args:
|
145 |
+
pixel_values (Image): The input image.
|
146 |
+
prompt (str): The input prompt.
|
147 |
+
tokenizer (PreTrainedTokenizer): The tokenizer to use.
|
148 |
+
image_processor: The image processor to use.
|
149 |
+
catty (bool, optional): Whether to use catty. Defaults to True.
|
150 |
+
generation_config (dict, optional): The generation config.
|
151 |
+
Defaults to None.
|
152 |
+
max_splits (int, optional): The maximum number of splits.
|
153 |
+
Defaults to 8.
|
154 |
+
Returns:
|
155 |
+
str: The generated response.
|
156 |
+
"""
|
157 |
+
if catty:
|
158 |
+
cropped_images = split_image_with_catty(pixel_values,
|
159 |
+
do_resize=True,
|
160 |
+
max_crop_slices=max_splits)
|
161 |
+
else:
|
162 |
+
cropped_images = split_image(pixel_values, max_splits=max_splits)
|
163 |
+
prompt = self.apply_chat_template(prompt, len(cropped_images))
|
164 |
+
cropped_images = image_processor.preprocess(
|
165 |
+
cropped_images, return_tensors='pt')['pixel_values']
|
166 |
+
cropped_images = cropped_images.to(self.device)
|
167 |
+
# extract features with general_vit
|
168 |
+
general_vit_features = self.extract_image_features(
|
169 |
+
cropped_images, vision_encoder='general_vit')
|
170 |
+
# extract features with ocr_vit
|
171 |
+
ocr_vit_features = self.extract_image_features(
|
172 |
+
cropped_images, vision_encoder='ocr_vit')
|
173 |
+
image_features = 0.5 * general_vit_features + 0.5 * ocr_vit_features
|
174 |
+
model_inputs = tokenizer(prompt, return_tensors='pt')
|
175 |
+
input_ids = model_inputs['input_ids'].to(self.device)
|
176 |
+
attention_mask = model_inputs['attention_mask'].to(self.device)
|
177 |
+
# stop token
|
178 |
+
eos_token_id = tokenizer.convert_tokens_to_ids("<|im_end|>")
|
179 |
+
# image token
|
180 |
+
image_token_id = tokenizer.convert_tokens_to_ids("<|endoftext|>")
|
181 |
+
generation_config.update(
|
182 |
+
{
|
183 |
+
'eos_token_id': eos_token_id,
|
184 |
+
}
|
185 |
+
)
|
186 |
+
outputs = self.generate(
|
187 |
+
input_ids=input_ids,
|
188 |
+
attention_mask=attention_mask,
|
189 |
+
image_features=[image_features],
|
190 |
+
image_token_id=image_token_id,
|
191 |
+
**generation_config
|
192 |
+
)
|
193 |
+
response = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
|
194 |
+
return response
|
195 |
+
|
196 |
+
def generate(self,
|
197 |
+
input_ids: torch.LongTensor,
|
198 |
+
attention_mask: torch.LongTensor,
|
199 |
+
image_features: List[torch.Tensor],
|
200 |
+
image_token_id: int,
|
201 |
+
generation_config: Optional[dict] = None,
|
202 |
+
output_hidden_states: Optional[bool] = None,
|
203 |
+
return_dict: Optional[bool] = None,
|
204 |
+
**generate_kwargs) -> torch.LongTensor:
|
205 |
+
input_embeddings = self.llm.lm.embed_in(input_ids)
|
206 |
+
batch_size = input_ids.shape[0]
|
207 |
+
assert len(image_features) == batch_size
|
208 |
+
for i in range(batch_size):
|
209 |
+
special_pos = input_ids[i] == image_token_id
|
210 |
+
pos = (special_pos[:-1] != special_pos[1:]).nonzero() + 1
|
211 |
+
if pos.shape[0] % 2 != 0:
|
212 |
+
# when the sequence is <image><caption>
|
213 |
+
# we need to add a dummy token
|
214 |
+
pos = torch.cat([torch.tensor([[0]]).to(pos.device), pos])
|
215 |
+
pos = pos.reshape(-1, 2).tolist()
|
216 |
+
pos_mapping, total_images = self.get_pos_mapping(pos)
|
217 |
+
assert total_images == len(image_features[i])
|
218 |
+
img_offset = 0
|
219 |
+
for j, (start, end) in enumerate(pos):
|
220 |
+
num_images = pos_mapping[j]
|
221 |
+
input_embeddings[i, start:end] = torch.cat(
|
222 |
+
[image_features[i][img_offset+k]
|
223 |
+
for k in range(num_images)],
|
224 |
+
dim=0
|
225 |
+
)
|
226 |
+
img_offset += num_images
|
227 |
+
outputs = self.llm.generate(
|
228 |
+
inputs_embeds=input_embeddings,
|
229 |
+
attention_mask=attention_mask,
|
230 |
+
generation_config=generation_config,
|
231 |
+
output_hidden_states=output_hidden_states,
|
232 |
+
return_dict=return_dict,
|
233 |
+
use_cache=True,
|
234 |
+
**generate_kwargs
|
235 |
+
)
|
236 |
+
return outputs
|
preprocessor_config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"crop_size": {
|
3 |
+
"height": 336,
|
4 |
+
"width": 336
|
5 |
+
},
|
6 |
+
"do_center_crop": true,
|
7 |
+
"do_convert_rgb": true,
|
8 |
+
"do_normalize": true,
|
9 |
+
"do_rescale": true,
|
10 |
+
"do_resize": true,
|
11 |
+
"image_mean": [
|
12 |
+
0.48145466,
|
13 |
+
0.4578275,
|
14 |
+
0.40821073
|
15 |
+
],
|
16 |
+
"image_processor_type": "CLIPImageProcessor",
|
17 |
+
"image_std": [
|
18 |
+
0.26862954,
|
19 |
+
0.26130258,
|
20 |
+
0.27577711
|
21 |
+
],
|
22 |
+
"resample": 3,
|
23 |
+
"rescale_factor": 0.00392156862745098,
|
24 |
+
"size": {
|
25 |
+
"shortest_edge": 336
|
26 |
+
}
|
27 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|startoftext|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|im_end|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<unk>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": true,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<unk>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": true,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:386c49cf943d71aa110361135338c50e38beeff0a66593480421f37b319e1a39
|
3 |
+
size 1033105
|
tokenizer_config.json
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": true,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<unk>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": true,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<|startoftext|>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": true,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"2": {
|
23 |
+
"content": "<|endoftext|>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": true,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": true
|
29 |
+
},
|
30 |
+
"7": {
|
31 |
+
"content": "<|im_end|>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false,
|
36 |
+
"special": true
|
37 |
+
}
|
38 |
+
},
|
39 |
+
"bos_token": "<|startoftext|>",
|
40 |
+
"chat_template": "{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% if system_message is defined %}{{ system_message }}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|im_start|>user\\n' + content + '<|im_end|>\\n<|im_start|>assistant\\n' }}{% elif message['role'] == 'assistant' %}{{ content + '<|im_end|>' + '\\n' }}{% endif %}{% endfor %}",
|
41 |
+
"clean_up_tokenization_spaces": false,
|
42 |
+
"eos_token": "<|im_end|>",
|
43 |
+
"legacy": true,
|
44 |
+
"model_max_length": 4096,
|
45 |
+
"pad_token": "<unk>",
|
46 |
+
"padding_side": "right",
|
47 |
+
"sp_model_kwargs": {},
|
48 |
+
"spaces_between_special_tokens": false,
|
49 |
+
"split_special_tokens": false,
|
50 |
+
"tokenizer_class": "LlamaTokenizer",
|
51 |
+
"unk_token": "<unk>",
|
52 |
+
"use_default_system_prompt": false
|
53 |
+
}
|