File size: 15,792 Bytes
904ef7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 |
import numpy as np
import torch
import enum
import itertools
from dataclasses import dataclass
import torch.optim as optim
@torch.no_grad()
def PowerIter(mat_g, error_tolerance=1e-6, num_iters=100):
"""Power iteration.
Compute the maximum eigenvalue of mat, for scaling.
v is a random vector with values in (-1, 1)
Args:
mat_g: the symmetric PSD matrix.
error_tolerance: Iterative exit condition.
num_iters: Number of iterations.
Returns:
eigen vector, eigen value, num_iters
"""
v = torch.rand(list(mat_g.shape)[0], device=mat_g.get_device()) * 2 - 1
error = 1
iters = 0
singular_val = 0
while error > error_tolerance and iters < num_iters:
v = v / torch.norm(v)
mat_v = torch.mv(mat_g, v)
s_v = torch.dot(v, mat_v)
error = torch.abs(s_v - singular_val)
v = mat_v
singular_val = s_v
iters += 1
return singular_val, v / torch.norm(v), iters
@torch.no_grad()
def MatPower(mat_m, p):
"""Computes mat_m^p, for p a positive integer.
Args:
mat_m: a square matrix
p: a positive integer
Returns:
mat_m^p
"""
if p in [1, 2, 4, 8, 16, 32]:
p_done = 1
res = mat_m
while p_done < p:
res = torch.matmul(res, res)
p_done *= 2
return res
power = None
while p > 0:
if p % 2 == 1:
power = torch.matmul(mat_m, power) if power is not None else mat_m
p //= 2
mat_m = torch.matmul(mat_m, mat_m)
return power
@torch.no_grad()
def ComputePower(mat_g, p,
iter_count=100,
error_tolerance=1e-6,
ridge_epsilon=1e-6):
"""A method to compute G^{-1/p} using a coupled Newton iteration.
See for example equation 3.2 on page 9 of:
A Schur-Newton Method for the Matrix p-th Root and its Inverse
by Chun-Hua Guo and Nicholas J. Higham
SIAM Journal on Matrix Analysis and Applications,
2006, Vol. 28, No. 3 : pp. 788-804
https://pdfs.semanticscholar.org/0abe/7f77433cf5908bfe2b79aa91af881da83858.pdf
Args:
mat_g: A square positive semidefinite matrix
p: a positive integer
iter_count: Stop iterating after this many rounds.
error_tolerance: Threshold for stopping iteration
ridge_epsilon: We add this times I to G, to make is positive definite.
For scaling, we multiply it by the largest eigenvalue of G.
Returns:
(mat_g + rI)^{-1/p} (r = ridge_epsilon * max_eigenvalue of mat_g).
"""
shape = list(mat_g.shape)
if len(shape) == 1:
return torch.pow(mat_g + ridge_epsilon, -1/p)
identity = torch.eye(shape[0], device=mat_g.get_device())
if shape[0] == 1:
return identity
alpha = -1.0/p
max_ev, _, _ = PowerIter(mat_g)
ridge_epsilon *= max_ev
mat_g += ridge_epsilon * identity
z = (1 + p) / (2 * torch.norm(mat_g))
# The best value for z is
# (1 + p) * (c_max^{1/p} - c_min^{1/p}) /
# (c_max^{1+1/p} - c_min^{1+1/p})
# where c_max and c_min are the largest and smallest singular values of
# mat_g.
# The above estimate assumes that c_max > c_min * 2^p
# Can replace above line by the one below, but it is less accurate,
# hence needs more iterations to converge.
# z = (1 + p) / tf.trace(mat_g)
# If we want the method to always converge, use z = 1 / norm(mat_g)
# or z = 1 / tf.trace(mat_g), but these can result in many
# extra iterations.
mat_root = identity * torch.pow(z, 1.0/p)
mat_m = mat_g * z
error = torch.max(torch.abs(mat_m - identity))
count = 0
while error > error_tolerance and count < iter_count:
tmp_mat_m = (1 - alpha) * identity + alpha * mat_m
new_mat_root = torch.matmul(mat_root, tmp_mat_m)
mat_m = torch.matmul(MatPower(tmp_mat_m, p), mat_m)
new_error = torch.max(torch.abs(mat_m - identity))
if new_error > error * 1.2:
break
mat_root = new_mat_root
error = new_error
count += 1
return mat_root
# Grafting is a technique to fix the layerwise scale of Shampoo optimizer.
# https://arxiv.org/pdf/2002.11803.pdf studies this in detail. This
# allows us to plugin the Shampoo optimizer into settings where SGD/AdaGrad
# is already well tuned. Grafting onto Shampoo means take the Shampoo direction,
# but use the step magnitude from the grafted optimizer such as Adagrad or SGD.
class LayerwiseGrafting(enum.IntEnum):
NONE = 0
SGD = 1
ADAGRAD = 2
@dataclass
class ShampooHyperParams:
"""Shampoo hyper parameters."""
beta2: float = 0.9
diagonal_eps: float = 1e-6
matrix_eps: float = 1e-12
weight_decay: float = 0.0
inverse_exponent_override: int = 2 # fixed exponent for preconditioner, if >0
start_preconditioning_step: int = 1
# Performance tuning params for controlling memory and compute requirements.
# How often to compute preconditioner.
preconditioning_compute_steps: int = 1
# How often to compute statistics.
statistics_compute_steps: int = 1
# Block size for large layers (if > 0).
# Block size = 1 ==> Adagrad (Don't do this, extremely inefficient!)
# Block size should be as large as feasible under memory/time constraints.
block_size: int = 128
# Automatic shape interpretation (for eg: [4, 3, 1024, 512] would result in
# 12 x [1024, 512] L and R statistics. Disabled by default which results in
# Shampoo constructing statistics [4, 4], [3, 3], [1024, 1024], [512, 512].
best_effort_shape_interpretation: bool = True
# Type of grafting (SGD or AdaGrad).
# https://arxiv.org/pdf/2002.11803.pdf
graft_type: int = LayerwiseGrafting.ADAGRAD
# Nesterov momentum
nesterov: bool = True
class Graft:
"""Base class to perform grafting onto Shampoo. This class does no grafting.
"""
def __init__(self, hps, unused_var):
self.hps = hps
def add_statistics(self, grad):
pass
def precondition_gradient(self, grad):
return grad
def update_momentum(self, update, unused_beta1):
return update
class SGDGraft(Graft):
"""Graft using SGD+momentum.
momentum maintains an exponentially weighted moving average of gradients.
"""
def __init__(self, hps, var):
super(SGDGraft, self).__init__(hps, var)
self.momentum = torch.zeros_like(var.data, device=var.get_device())
def update_momentum(self, update, beta1):
self.momentum.mul_(beta1).add_(update)
return self.momentum
class AdagradGraft(SGDGraft):
"""Graft using Adagrad.
Essentially an implementation of Adagrad with momentum.
"""
def __init__(self, hps, var):
super(AdagradGraft, self).__init__(hps, var)
self.statistics = torch.zeros_like(var.data, device=var.get_device())
def add_statistics(self, grad):
self.statistics.add_(grad * grad)
def precondition_gradient(self, grad):
return grad / (torch.sqrt(self.statistics) + self.hps.diagonal_eps)
class BlockPartitioner:
"""Partitions a tensor into smaller tensors for preconditioning.
For example, if a variable has shape (4096, 512), we might split the
4096 into 4 blocks, so we effectively have 4 variables of size
(1024, 512) each.
"""
def __init__(self, var, hps):
self._shape = var.shape
self._splits = []
self._split_sizes = []
split_sizes = []
# We split var into smaller blocks. Here we store the metadata to make
# that split.
for i, d in enumerate(var.shape):
if hps.block_size > 0 and d > hps.block_size:
# d-1, otherwise split appends a 0-size array.
nsplit = (d-1) // hps.block_size
indices = (np.arange(nsplit, dtype=np.int32) + 1) * hps.block_size
sizes = np.ones(nsplit + 1, dtype=np.int32) * hps.block_size
sizes[-1] = d - indices[-1]
self._splits.append((i, indices))
self._split_sizes.append((i, sizes))
split_sizes.append(sizes)
else:
split_sizes.append(np.array([d], dtype=np.int32))
self._num_splits = len(split_sizes)
self._preconditioner_shapes = []
for t in itertools.product(*split_sizes):
self._preconditioner_shapes.extend([[d, d] for d in t])
def shapes_for_preconditioners(self):
return self._preconditioner_shapes
def num_splits(self):
return self._num_splits
def partition(self, tensor):
"""Partition tensor into blocks."""
assert tensor.shape == self._shape
tensors = [tensor]
for (i, sizes) in self._split_sizes:
tensors_local = []
for t in tensors:
tensors_local.extend(
torch.split(t, tuple(sizes), dim=i))
tensors = tensors_local
return tensors
def merge_partitions(self, partitions):
"""Merge partitions back to original shape."""
for (i, indices) in reversed(self._splits):
n = len(indices) + 1
partial_merged_tensors = []
ind = 0
while ind < len(partitions):
partial_merged_tensors.append(
torch.cat(partitions[ind:ind + n], axis=i))
ind += n
partitions = partial_merged_tensors
assert len(partitions) == 1
return partitions[0]
def _merge_small_dims(shape_to_merge, max_dim):
"""Merge small dimensions.
If there are some small dimensions, we collapse them:
e.g. [1, 2, 512, 1, 2048, 1, 3, 4] --> [1024, 2048, 12] if max_dim = 1024
[1, 2, 768, 1, 2048] --> [2, 768, 2048]
Args:
shape_to_merge: Shape to merge small dimensions.
max_dim: Maximal dimension of output shape used in merging.
Returns:
Merged shape.
"""
resulting_shape = []
product = 1
for d in shape_to_merge:
if product * d <= max_dim:
product *= d
else:
if product > 1:
resulting_shape.append(product)
product = d
if product > 1:
resulting_shape.append(product)
return resulting_shape
class Preconditioner:
"""Compute statistics/shape from gradients for preconditioning."""
def __init__(self, var, hps):
self._hps = hps
self._original_shape = var.shape
self._transformed_shape = var.shape
if hps.best_effort_shape_interpretation:
self._transformed_shape = _merge_small_dims(
self._original_shape, hps.block_size)
reshaped_var = torch.reshape(var, self._transformed_shape)
self._partitioner = BlockPartitioner(reshaped_var, hps)
shapes = self._partitioner.shapes_for_preconditioners()
rank = len(self._transformed_shape)
device = var.get_device()
if rank <= 1:
self.statistics = []
self.preconditioners = []
else:
eps = self._hps.matrix_eps
self.statistics = [eps * torch.eye(s[0], device=device) for s in shapes]
self.preconditioners = [torch.eye(s[0], device=device) for s in shapes]
def add_statistics(self, grad):
"""Compute statistics from gradients and add to the correct state entries.
Args:
grad: Gradient to compute statistics from.
"""
if not self.statistics: return
reshaped_grad = torch.reshape(grad, self._transformed_shape)
partitioned_grads = self._partitioner.partition(reshaped_grad)
w1 = self._hps.beta2
w2 = 1.0 if w1 == 1.0 else (1.0 - w1)
rank = len(self._transformed_shape)
for j, grad in enumerate(partitioned_grads):
for i in range(rank):
axes = list(range(i)) + list(range(i + 1, rank))
stat = torch.tensordot(grad, grad, [axes, axes])
self.statistics[j*rank + i].mul_(w1).add_(stat, alpha=w2)
def exponent_for_preconditioner(self):
"""Returns exponent to use for inverse-pth root M^{-1/p}."""
if self._hps.inverse_exponent_override > 0:
return self._hps.inverse_exponent_override
return 2 * len(self._transformed_shape)
def compute_preconditioners(self):
"""Compute L^{-1/exp} for each stats matrix L."""
exp = self.exponent_for_preconditioner()
eps = self._hps.matrix_eps
for i, stat in enumerate(self.statistics):
self.preconditioners[i] = ComputePower(
stat, exp, ridge_epsilon=eps)
def preconditioned_grad(self, grad):
"""Precondition the gradient.
Args:
grad: A gradient tensor to precondition.
Returns:
A preconditioned gradient.
"""
if not self.preconditioners: return grad
reshaped_grad = torch.reshape(grad, self._transformed_shape)
partitioned_grads = self._partitioner.partition(reshaped_grad)
preconditioned_partitioned_grads = []
num_splits = self._partitioner.num_splits()
for i, grad in enumerate(partitioned_grads):
preconditioners_for_grad = self.preconditioners[i * num_splits:(i + 1) *
num_splits]
rank = len(grad.shape)
precond_grad = grad
for j in range(rank):
preconditioner = preconditioners_for_grad[j]
precond_grad = torch.tensordot(
precond_grad, preconditioner, [[0], [0]])
preconditioned_partitioned_grads.append(precond_grad)
merged_grad = self._partitioner.merge_partitions(
preconditioned_partitioned_grads)
return torch.reshape(merged_grad, self._original_shape)
STEP = 'step'
MOMENTUM = 'momentum'
PRECONDITIONER = 'preconditioner'
GRAFT = 'graft'
class Shampoo(optim.Optimizer):
"""The Shampoo optimizer."""
def __init__(self,
params,
lr=1.0,
momentum=0.9,
hyperparams=ShampooHyperParams()):
defaults = dict(lr=lr, momentum=momentum)
self.hps = hyperparams
super(Shampoo, self).__init__(params, defaults)
def init_var_state(self, var, state):
"""Initialize the PyTorch state of for a single variable."""
state[STEP] = 0
state[MOMENTUM] = torch.zeros_like(var.data, device=var.get_device())
state[PRECONDITIONER] = Preconditioner(var, self.hps)
if self.hps.graft_type == LayerwiseGrafting.ADAGRAD:
state[GRAFT] = AdagradGraft(self.hps, var)
elif self.hps.graft_type == LayerwiseGrafting.SGD:
state[GRAFT] = SGDGraft(self.hps, var)
else:
state[GRAFT] = Graft(self.hps, var)
def step(self, closure=None):
hps = self.hps
for group in self.param_groups:
lr = group['lr']
for p in group['params']:
if p.grad is None: continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError('Shampoo does not support sparse yet')
state = self.state[p]
if not state:
self.init_var_state(p, state)
state[STEP] += 1
preconditioner = state[PRECONDITIONER]
graft = state[GRAFT]
# Gather statistics, compute preconditioners
graft.add_statistics(grad)
if state[STEP] % hps.statistics_compute_steps == 0:
preconditioner.add_statistics(grad)
if state[STEP] % hps.preconditioning_compute_steps == 0:
preconditioner.compute_preconditioners()
# Precondition gradients
graft_grad = graft.precondition_gradient(grad)
shampoo_grad = grad
if state[STEP] >= self.hps.start_preconditioning_step:
shampoo_grad = preconditioner.preconditioned_grad(grad)
# Grafting
graft_norm = torch.norm(graft_grad)
shampoo_norm = torch.norm(shampoo_grad)
shampoo_grad.mul_(graft_norm / (shampoo_norm + 1e-16))
# Weight decay
if self.hps.weight_decay != 0.0:
shampoo_grad.add_(p.data, alpha=self.hps.weight_decay)
graft_grad.add_(p.data, alpha=self.hps.weight_decay)
# Momentum and Nesterov momentum, if needed
state[MOMENTUM].mul_(group['momentum']).add_(shampoo_grad)
graft_momentum = graft.update_momentum(grad, group['momentum'])
if state[STEP] >= self.hps.start_preconditioning_step:
momentum_update = state[MOMENTUM]
wd_update = shampoo_grad
else:
momentum_update = graft_momentum
wd_update = graft_grad
if hps.nesterov:
momentum_update.mul_(group['momentum']).add_(wd_update)
# Final update
p.data.add_(momentum_update, alpha=-lr) |