import torch import argparse from nerf.provider import NeRFDataset from nerf.utils import * import gradio as gr import gc print(f'[INFO] loading options..') # fake config object, this should not be used in CMD, only allow change from gradio UI. parser = argparse.ArgumentParser() parser.add_argument('--text', default=None, help="text prompt") # parser.add_argument('-O', action='store_true', help="equals --fp16 --cuda_ray --dir_text") # parser.add_argument('-O2', action='store_true', help="equals --fp16 --dir_text") parser.add_argument('--test', action='store_true', help="test mode") parser.add_argument('--save_mesh', action='store_true', help="export an obj mesh with texture") parser.add_argument('--eval_interval', type=int, default=10, help="evaluate on the valid set every interval epochs") parser.add_argument('--workspace', type=str, default='trial_gradio') parser.add_argument('--guidance', type=str, default='stable-diffusion', help='choose from [stable-diffusion, clip]') parser.add_argument('--seed', type=int, default=0) ### training options parser.add_argument('--iters', type=int, default=10000, help="training iters") parser.add_argument('--lr', type=float, default=1e-3, help="initial learning rate") parser.add_argument('--ckpt', type=str, default='latest') parser.add_argument('--cuda_ray', action='store_true', help="use CUDA raymarching instead of pytorch") parser.add_argument('--max_steps', type=int, default=1024, help="max num steps sampled per ray (only valid when using --cuda_ray)") parser.add_argument('--num_steps', type=int, default=64, help="num steps sampled per ray (only valid when not using --cuda_ray)") parser.add_argument('--upsample_steps', type=int, default=64, help="num steps up-sampled per ray (only valid when not using --cuda_ray)") parser.add_argument('--update_extra_interval', type=int, default=16, help="iter interval to update extra status (only valid when using --cuda_ray)") parser.add_argument('--max_ray_batch', type=int, default=4096, help="batch size of rays at inference to avoid OOM (only valid when not using --cuda_ray)") parser.add_argument('--albedo_iters', type=int, default=1000, help="training iters that only use albedo shading") # model options parser.add_argument('--bg_radius', type=float, default=1.4, help="if positive, use a background model at sphere(bg_radius)") parser.add_argument('--density_thresh', type=float, default=10, help="threshold for density grid to be occupied") # network backbone parser.add_argument('--fp16', action='store_true', help="use amp mixed precision training") parser.add_argument('--backbone', type=str, default='grid', help="nerf backbone, choose from [grid, tcnn, vanilla]") # rendering resolution in training, decrease this if CUDA OOM. parser.add_argument('--w', type=int, default=64, help="render width for NeRF in training") parser.add_argument('--h', type=int, default=64, help="render height for NeRF in training") parser.add_argument('--jitter_pose', action='store_true', help="add jitters to the randomly sampled camera poses") ### dataset options parser.add_argument('--bound', type=float, default=1, help="assume the scene is bounded in box(-bound, bound)") parser.add_argument('--dt_gamma', type=float, default=0, help="dt_gamma (>=0) for adaptive ray marching. set to 0 to disable, >0 to accelerate rendering (but usually with worse quality)") parser.add_argument('--min_near', type=float, default=0.1, help="minimum near distance for camera") parser.add_argument('--radius_range', type=float, nargs='*', default=[1.0, 1.5], help="training camera radius range") parser.add_argument('--fovy_range', type=float, nargs='*', default=[40, 70], help="training camera fovy range") parser.add_argument('--dir_text', action='store_true', help="direction-encode the text prompt, by appending front/side/back/overhead view") parser.add_argument('--angle_overhead', type=float, default=30, help="[0, angle_overhead] is the overhead region") parser.add_argument('--angle_front', type=float, default=60, help="[0, angle_front] is the front region, [180, 180+angle_front] the back region, otherwise the side region.") parser.add_argument('--lambda_entropy', type=float, default=1e-4, help="loss scale for alpha entropy") parser.add_argument('--lambda_opacity', type=float, default=0, help="loss scale for alpha value") parser.add_argument('--lambda_orient', type=float, default=1e-2, help="loss scale for orientation") ### GUI options parser.add_argument('--gui', action='store_true', help="start a GUI") parser.add_argument('--W', type=int, default=800, help="GUI width") parser.add_argument('--H', type=int, default=800, help="GUI height") parser.add_argument('--radius', type=float, default=3, help="default GUI camera radius from center") parser.add_argument('--fovy', type=float, default=60, help="default GUI camera fovy") parser.add_argument('--light_theta', type=float, default=60, help="default GUI light direction in [0, 180], corresponding to elevation [90, -90]") parser.add_argument('--light_phi', type=float, default=0, help="default GUI light direction in [0, 360), azimuth") parser.add_argument('--max_spp', type=int, default=1, help="GUI rendering max sample per pixel") opt = parser.parse_args() # default to use -O !!! opt.fp16 = True opt.dir_text = True opt.cuda_ray = True # opt.lambda_entropy = 1e-4 # opt.lambda_opacity = 0 if opt.backbone == 'vanilla': from nerf.network import NeRFNetwork elif opt.backbone == 'tcnn': from nerf.network_tcnn import NeRFNetwork elif opt.backbone == 'grid': from nerf.network_grid import NeRFNetwork else: raise NotImplementedError(f'--backbone {opt.backbone} is not implemented!') print(opt) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print(f'[INFO] loading models..') if opt.guidance == 'stable-diffusion': from nerf.sd import StableDiffusion guidance = StableDiffusion(device) elif opt.guidance == 'clip': from nerf.clip import CLIP guidance = CLIP(device) else: raise NotImplementedError(f'--guidance {opt.guidance} is not implemented.') train_loader = NeRFDataset(opt, device=device, type='train', H=opt.h, W=opt.w, size=100).dataloader() valid_loader = NeRFDataset(opt, device=device, type='val', H=opt.H, W=opt.W, size=5).dataloader() test_loader = NeRFDataset(opt, device=device, type='test', H=opt.H, W=opt.W, size=100).dataloader() print(f'[INFO] everything loaded!') trainer = None model = None # define UI with gr.Blocks(css=".gradio-container {max-width: 512px; margin: auto;}") as demo: # title gr.Markdown('[Stable-DreamFusion](https://github.com/ashawkey/stable-dreamfusion) Text-to-3D Example') # inputs prompt = gr.Textbox(label="Prompt", max_lines=1, value="a DSLR photo of a koi fish") iters = gr.Slider(label="Iters", minimum=1000, maximum=20000, value=5000, step=100) seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True) button = gr.Button('Generate') # outputs image = gr.Image(label="image", visible=True) video = gr.Video(label="video", visible=False) logs = gr.Textbox(label="logging") # gradio main func def submit(text, iters, seed): global trainer, model # seed opt.seed = seed opt.text = text opt.iters = iters seed_everything(seed) # clean up if trainer is not None: del model del trainer gc.collect() torch.cuda.empty_cache() print('[INFO] clean up!') # simply reload everything... model = NeRFNetwork(opt) optimizer = lambda model: torch.optim.Adam(model.get_params(opt.lr), betas=(0.9, 0.99), eps=1e-15) scheduler = lambda optimizer: optim.lr_scheduler.LambdaLR(optimizer, lambda iter: 0.1 ** min(iter / opt.iters, 1)) trainer = Trainer('df', opt, model, guidance, device=device, workspace=opt.workspace, optimizer=optimizer, ema_decay=0.95, fp16=opt.fp16, lr_scheduler=scheduler, use_checkpoint=opt.ckpt, eval_interval=opt.eval_interval, scheduler_update_every_step=True) # train (every ep only contain 8 steps, so we can get some vis every ~10s) STEPS = 8 max_epochs = np.ceil(opt.iters / STEPS).astype(np.int32) # we have to get the explicit training loop out here to yield progressive results... loader = iter(valid_loader) start_t = time.time() for epoch in range(max_epochs): trainer.train_gui(train_loader, step=STEPS) # manual test and get intermediate results try: data = next(loader) except StopIteration: loader = iter(valid_loader) data = next(loader) trainer.model.eval() if trainer.ema is not None: trainer.ema.store() trainer.ema.copy_to() with torch.no_grad(): with torch.cuda.amp.autocast(enabled=trainer.fp16): preds, preds_depth = trainer.test_step(data, perturb=False) if trainer.ema is not None: trainer.ema.restore() pred = preds[0].detach().cpu().numpy() # pred_depth = preds_depth[0].detach().cpu().numpy() pred = (pred * 255).astype(np.uint8) yield { image: gr.update(value=pred, visible=True), video: gr.update(visible=False), logs: f"training iters: {epoch * STEPS} / {iters}, lr: {trainer.optimizer.param_groups[0]['lr']:.6f}", } # test trainer.test(test_loader) results = glob.glob(os.path.join(opt.workspace, 'results', '*rgb*.mp4')) assert results is not None, "cannot retrieve results!" results.sort(key=lambda x: os.path.getmtime(x)) # sort by mtime end_t = time.time() yield { image: gr.update(visible=False), video: gr.update(value=results[-1], visible=True), logs: f"Generation Finished in {(end_t - start_t)/ 60:.4f} minutes!", } button.click( submit, [prompt, iters, seed], [image, video, logs] ) # concurrency_count: only allow ONE running progress, else GPU will OOM. demo.queue(concurrency_count=1) demo.launch()