Upload model.py
Browse files
model.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModel
|
2 |
+
import torch
|
3 |
+
|
4 |
+
|
5 |
+
class MultiLabelAttention(torch.nn.Module):
|
6 |
+
def __init__(self, D_in, num_labels):
|
7 |
+
super().__init__()
|
8 |
+
self.A = torch.nn.Parameter(torch.empty(D_in, num_labels))
|
9 |
+
torch.nn.init.uniform_(self.A, -0.1, 0.1)
|
10 |
+
|
11 |
+
def forward(self, x):
|
12 |
+
attention_weights = torch.nn.functional.softmax(
|
13 |
+
torch.tanh(torch.matmul(x, self.A)), dim=1
|
14 |
+
)
|
15 |
+
return torch.matmul(torch.transpose(attention_weights, 2, 1), x)
|
16 |
+
|
17 |
+
|
18 |
+
class BertMesh(torch.nn.Module):
|
19 |
+
def __init__(
|
20 |
+
self,
|
21 |
+
pretrained_model,
|
22 |
+
num_labels,
|
23 |
+
hidden_size=512,
|
24 |
+
dropout=0,
|
25 |
+
multilabel_attention=False,
|
26 |
+
):
|
27 |
+
super().__init__()
|
28 |
+
self.pretrained_model = pretrained_model
|
29 |
+
self.num_labels = num_labels
|
30 |
+
self.hidden_size = hidden_size
|
31 |
+
self.dropout = dropout
|
32 |
+
self.multilabel_attention = multilabel_attention
|
33 |
+
|
34 |
+
self.bert = AutoModel.from_pretrained(pretrained_model) # 768
|
35 |
+
self.multilabel_attention_layer = MultiLabelAttention(
|
36 |
+
768, num_labels
|
37 |
+
) # num_labels, 768
|
38 |
+
self.linear_1 = torch.nn.Linear(768, hidden_size) # num_labels, 512
|
39 |
+
self.linear_2 = torch.nn.Linear(hidden_size, 1) # num_labels, 1
|
40 |
+
self.linear_out = torch.nn.Linear(hidden_size, num_labels)
|
41 |
+
self.dropout_layer = torch.nn.Dropout(self.dropout)
|
42 |
+
|
43 |
+
def forward(self, inputs):
|
44 |
+
if self.multilabel_attention:
|
45 |
+
hidden_states = self.bert(input_ids=inputs)[0]
|
46 |
+
attention_outs = self.multilabel_attention_layer(hidden_states)
|
47 |
+
outs = torch.nn.functional.relu(self.linear_1(attention_outs))
|
48 |
+
outs = self.dropout_layer(outs)
|
49 |
+
outs = torch.sigmoid(self.linear_2(outs))
|
50 |
+
outs = torch.flatten(outs, start_dim=1)
|
51 |
+
else:
|
52 |
+
cls = self.bert(input_ids=inputs)[1]
|
53 |
+
outs = torch.nn.functional.relu(self.linear_1(cls))
|
54 |
+
outs = self.dropout_layer(outs)
|
55 |
+
outs = torch.sigmoid(self.linear_out(outs))
|
56 |
+
return outs
|