nsorros commited on
Commit
ba33264
1 Parent(s): e68d6e7

Upload model.py

Browse files
Files changed (1) hide show
  1. model.py +56 -0
model.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoModel
2
+ import torch
3
+
4
+
5
+ class MultiLabelAttention(torch.nn.Module):
6
+ def __init__(self, D_in, num_labels):
7
+ super().__init__()
8
+ self.A = torch.nn.Parameter(torch.empty(D_in, num_labels))
9
+ torch.nn.init.uniform_(self.A, -0.1, 0.1)
10
+
11
+ def forward(self, x):
12
+ attention_weights = torch.nn.functional.softmax(
13
+ torch.tanh(torch.matmul(x, self.A)), dim=1
14
+ )
15
+ return torch.matmul(torch.transpose(attention_weights, 2, 1), x)
16
+
17
+
18
+ class BertMesh(torch.nn.Module):
19
+ def __init__(
20
+ self,
21
+ pretrained_model,
22
+ num_labels,
23
+ hidden_size=512,
24
+ dropout=0,
25
+ multilabel_attention=False,
26
+ ):
27
+ super().__init__()
28
+ self.pretrained_model = pretrained_model
29
+ self.num_labels = num_labels
30
+ self.hidden_size = hidden_size
31
+ self.dropout = dropout
32
+ self.multilabel_attention = multilabel_attention
33
+
34
+ self.bert = AutoModel.from_pretrained(pretrained_model) # 768
35
+ self.multilabel_attention_layer = MultiLabelAttention(
36
+ 768, num_labels
37
+ ) # num_labels, 768
38
+ self.linear_1 = torch.nn.Linear(768, hidden_size) # num_labels, 512
39
+ self.linear_2 = torch.nn.Linear(hidden_size, 1) # num_labels, 1
40
+ self.linear_out = torch.nn.Linear(hidden_size, num_labels)
41
+ self.dropout_layer = torch.nn.Dropout(self.dropout)
42
+
43
+ def forward(self, inputs):
44
+ if self.multilabel_attention:
45
+ hidden_states = self.bert(input_ids=inputs)[0]
46
+ attention_outs = self.multilabel_attention_layer(hidden_states)
47
+ outs = torch.nn.functional.relu(self.linear_1(attention_outs))
48
+ outs = self.dropout_layer(outs)
49
+ outs = torch.sigmoid(self.linear_2(outs))
50
+ outs = torch.flatten(outs, start_dim=1)
51
+ else:
52
+ cls = self.bert(input_ids=inputs)[1]
53
+ outs = torch.nn.functional.relu(self.linear_1(cls))
54
+ outs = self.dropout_layer(outs)
55
+ outs = torch.sigmoid(self.linear_out(outs))
56
+ return outs