from transformers import AutoModel, AutoConfig, PreTrainedModel import torch class MultiLabelAttention(torch.nn.Module): def __init__(self, D_in, num_labels): super().__init__() self.A = torch.nn.Parameter(torch.empty(D_in, num_labels)) torch.nn.init.uniform_(self.A, -0.1, 0.1) def forward(self, x): attention_weights = torch.nn.functional.softmax( torch.tanh(torch.matmul(x, self.A)), dim=1 ) return torch.matmul(torch.transpose(attention_weights, 2, 1), x) class BertMesh(PreTrainedModel): def __init__( self, config, pretrained_model="microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract", num_labels=28761, hidden_size=512, dropout=0, multilabel_attention=False, ): super().__init__(config=AutoConfig.from_pretrained(pretrained_model)) self.config.auto_map = {"AutoModel": "transformers_model.BertMesh"} self.pretrained_model = pretrained_model self.num_labels = num_labels self.hidden_size = hidden_size self.dropout = dropout self.multilabel_attention = multilabel_attention self.bert = AutoModel.from_pretrained(pretrained_model) # 768 self.multilabel_attention_layer = MultiLabelAttention( 768, num_labels ) # num_labels, 768 self.linear_1 = torch.nn.Linear(768, hidden_size) # num_labels, 512 self.linear_2 = torch.nn.Linear(hidden_size, 1) # num_labels, 1 self.linear_out = torch.nn.Linear(hidden_size, num_labels) self.dropout_layer = torch.nn.Dropout(self.dropout) def forward(self, input_ids, token_type_ids=None, attention_mask=None): input_ids = torch.tensor(input_ids) if self.multilabel_attention: hidden_states = self.bert(input_ids=input_ids)[0] attention_outs = self.multilabel_attention_layer(hidden_states) outs = torch.nn.functional.relu(self.linear_1(attention_outs)) outs = self.dropout_layer(outs) outs = torch.sigmoid(self.linear_2(outs)) outs = torch.flatten(outs, start_dim=1) else: cls = self.bert(input_ids=inputs)[1] outs = torch.nn.functional.relu(self.linear_1(cls)) outs = self.dropout_layer(outs) outs = torch.sigmoid(self.linear_out(outs)) return outs def _init_weights(self, module): pass