--- base_model: princeton-nlp/Llama-3-Base-8B-SFT library_name: peft tags: - alignment-handbook - trl - dpo - generated_from_trainer model-index: - name: llama3-dpo-lora results: [] --- # llama3-dpo-lora This model is a fine-tuned version of [princeton-nlp/Llama-3-Base-8B-SFT](https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5193 - Rewards/chosen: 0.0154 - Rewards/rejected: -0.7979 - Rewards/accuracies: 0.7280 - Rewards/margins: 0.8133 - Logps/rejected: -284.6558 - Logps/chosen: -292.3936 - Logits/rejected: -0.3843 - Logits/chosen: -0.4157 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 1 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6275 | 0.1047 | 100 | 0.6122 | 0.2594 | -0.0099 | 0.6920 | 0.2693 | -276.7753 | -289.9533 | -0.5582 | -0.5619 | | 0.5726 | 0.2094 | 200 | 0.5529 | -0.0787 | -0.6353 | 0.7040 | 0.5565 | -283.0293 | -293.3344 | -0.5103 | -0.5266 | | 0.5429 | 0.3141 | 300 | 0.5380 | -0.1730 | -0.8455 | 0.7260 | 0.6725 | -285.1317 | -294.2773 | -0.4689 | -0.4910 | | 0.5054 | 0.4187 | 400 | 0.5332 | -0.0870 | -0.8469 | 0.7240 | 0.7599 | -285.1459 | -293.4173 | -0.4261 | -0.4535 | | 0.5508 | 0.5234 | 500 | 0.5267 | -0.0207 | -0.8088 | 0.7180 | 0.7881 | -284.7646 | -292.7540 | -0.4045 | -0.4335 | | 0.5338 | 0.6281 | 600 | 0.5263 | 0.1981 | -0.5901 | 0.7300 | 0.7882 | -282.5771 | -290.5659 | -0.4002 | -0.4304 | | 0.5064 | 0.7328 | 700 | 0.5175 | -0.2007 | -1.0076 | 0.7300 | 0.8068 | -286.7521 | -294.5546 | -0.3761 | -0.4080 | | 0.5349 | 0.8375 | 800 | 0.5197 | 0.0149 | -0.7896 | 0.7200 | 0.8045 | -284.5727 | -292.3984 | -0.3853 | -0.4161 | | 0.4775 | 0.9422 | 900 | 0.5181 | 0.0150 | -0.7988 | 0.7260 | 0.8139 | -284.6649 | -292.3968 | -0.3842 | -0.4151 | ### Framework versions - PEFT 0.7.1 - Transformers 4.44.2 - Pytorch 2.2.1+cu121 - Datasets 2.14.6 - Tokenizers 0.19.1