ironrock commited on
Commit
d9e1ad8
·
verified ·
1 Parent(s): 0eacba6

Upload folder using huggingface_hub

Browse files
README.md CHANGED
@@ -1,73 +1,91 @@
1
  ---
2
- library_name: peft
 
3
  tags:
4
- - trl
5
- - dpo
6
- - generated_from_trainer
7
  base_model: Weni/WeniGPT-Agents-Mistral-1.0.6-SFT-merged
8
  model-index:
9
- - name: WeniGPT-Agents-Mistral-1.0.6-SFT-1.0.0-DPO
10
  results: []
 
11
  ---
12
 
13
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
- should probably proofread and complete it, then remove this comment. -->
15
 
16
- # WeniGPT-Agents-Mistral-1.0.6-SFT-1.0.0-DPO
 
17
 
18
- This model is a fine-tuned version of [Weni/WeniGPT-Agents-Mistral-1.0.6-SFT-merged](https://huggingface.co/Weni/WeniGPT-Agents-Mistral-1.0.6-SFT-merged) on an unknown dataset.
19
  It achieves the following results on the evaluation set:
20
- - Loss: 0.3800
21
- - Rewards/chosen: 3.9031
22
- - Rewards/rejected: -1.0055
23
- - Rewards/accuracies: 0.4545
24
- - Rewards/margins: 4.9085
25
- - Logps/rejected: -74.2283
26
- - Logps/chosen: -50.9638
27
- - Logits/rejected: -1.8630
28
- - Logits/chosen: -1.8449
29
 
30
- ## Model description
31
 
32
- More information needed
33
 
34
- ## Intended uses & limitations
35
 
36
- More information needed
37
 
38
- ## Training and evaluation data
 
 
 
 
39
 
40
- More information needed
 
 
 
 
 
 
 
 
 
41
 
42
- ## Training procedure
 
 
 
43
 
44
  ### Training hyperparameters
45
 
46
  The following hyperparameters were used during training:
47
  - learning_rate: 2e-05
48
- - train_batch_size: 2
49
- - eval_batch_size: 2
50
- - seed: 42
51
  - gradient_accumulation_steps: 2
 
52
  - total_train_batch_size: 4
53
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
54
- - lr_scheduler_type: linear
55
- - lr_scheduler_warmup_ratio: 0.03
56
- - training_steps: 144
57
- - mixed_precision_training: Native AMP
58
 
59
  ### Training results
60
 
61
- | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
62
- |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
63
- | 0.3687 | 1.04 | 50 | 0.3814 | 3.3729 | -0.3998 | 0.4545 | 3.7728 | -73.0170 | -52.0240 | -1.8429 | -1.8258 |
64
- | 0.401 | 2.08 | 100 | 0.3800 | 3.9031 | -1.0055 | 0.4545 | 4.9085 | -74.2283 | -50.9638 | -1.8630 | -1.8449 |
65
-
66
-
67
  ### Framework versions
68
 
69
- - PEFT 0.10.0
70
- - Transformers 4.38.2
71
- - Pytorch 2.1.0+cu118
72
- - Datasets 2.18.0
73
- - Tokenizers 0.15.2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: mit
3
+ library_name: "trl"
4
  tags:
5
+ - DPO
6
+ - WeniGPT
 
7
  base_model: Weni/WeniGPT-Agents-Mistral-1.0.6-SFT-merged
8
  model-index:
9
+ - name: Weni/WeniGPT-Agents-Mistral-1.0.6-SFT-1.0.0-DPO
10
  results: []
11
+ language: ['pt']
12
  ---
13
 
14
+ # Weni/WeniGPT-Agents-Mistral-1.0.6-SFT-1.0.0-DPO
 
15
 
16
+ This model is a fine-tuned version of [Weni/WeniGPT-Agents-Mistral-1.0.6-SFT-merged] on the dataset Weni/wenigpt-agent-dpo-1.0.0 with the DPO trainer. It is part of the WeniGPT project for [Weni](https://weni.ai/).
17
+ Description: Experiment on DPO with the best SFT model of WeniGPT
18
 
 
19
  It achieves the following results on the evaluation set:
20
+ {'eval_loss': 0.37998154759407043, 'eval_runtime': 6.4324, 'eval_samples_per_second': 3.42, 'eval_steps_per_second': 1.71, 'eval_rewards/chosen': 3.9030632972717285, 'eval_rewards/rejected': -1.0054824352264404, 'eval_rewards/accuracies': 0.4545454680919647, 'eval_rewards/margins': 4.908545970916748, 'eval_logps/rejected': -74.22832489013672, 'eval_logps/chosen': -50.96379470825195, 'eval_logits/rejected': -1.8629944324493408, 'eval_logits/chosen': -1.844895601272583, 'epoch': 3.0}
 
 
 
 
 
 
 
 
21
 
22
+ ## Intended uses & limitations
23
 
24
+ This model has not been trained to avoid specific intructions.
25
 
26
+ ## Training procedure
27
 
28
+ Finetuning was done on the model Weni/WeniGPT-Agents-Mistral-1.0.6-SFT-merged with the following prompt:
29
 
30
+ ```
31
+ ---------------------
32
+ System_prompt:
33
+ Agora você se chama {name}, você é {occupation} e seu objetivo é {chatbot_goal}. O adjetivo que mais define a sua personalidade é {adjective} e você se comporta da seguinte forma:
34
+ {instructions_formatted}
35
 
36
+ {context_statement}
37
+
38
+ Lista de requisitos:
39
+ - Responda de forma natural, mas nunca fale sobre um assunto fora do contexto.
40
+ - Nunca traga informações do seu próprio conhecimento.
41
+ - Repito é crucial que você responda usando apenas informações do contexto.
42
+ - Nunca mencione o contexto fornecido.
43
+ - Nunca mencione a pergunta fornecida.
44
+ - Gere a resposta mais útil possível para a pergunta usando informações do conexto acima.
45
+ - Nunca elabore sobre o porque e como você fez a tarefa, apenas responda.
46
 
47
+
48
+ ---------------------
49
+
50
+ ```
51
 
52
  ### Training hyperparameters
53
 
54
  The following hyperparameters were used during training:
55
  - learning_rate: 2e-05
56
+ - per_device_train_batch_size: 2
57
+ - per_device_eval_batch_size: 2
 
58
  - gradient_accumulation_steps: 2
59
+ - num_gpus: 1
60
  - total_train_batch_size: 4
61
+ - optimizer: AdamW
62
+ - lr_scheduler_type: cosine
63
+ - num_steps: 144
64
+ - quantization_type: bitsandbytes
65
+ - LoRA: ("\n - bits: 4\n - use_exllama: True\n - device_map: auto\n - use_cache: False\n - lora_r: 8\n - lora_alpha: 16\n - lora_dropout: 0.05\n - bias: none\n - target_modules: ['v_proj', 'q_proj']\n - task_type: CAUSAL_LM",)
66
 
67
  ### Training results
68
 
 
 
 
 
 
 
69
  ### Framework versions
70
 
71
+ - transformers==4.38.2
72
+ - datasets==2.18.0
73
+ - peft==0.10.0
74
+ - safetensors==0.4.2
75
+ - evaluate==0.4.1
76
+ - bitsandbytes==0.43
77
+ - huggingface_hub==0.22.2
78
+ - seqeval==1.2.2
79
+ - optimum==1.18.1
80
+ - auto-gptq==0.7.1
81
+ - gpustat==1.1.1
82
+ - deepspeed==0.14.0
83
+ - wandb==0.16.6
84
+ - trl==0.8.1
85
+ - accelerate==0.29.2
86
+ - coloredlogs==15.0.1
87
+ - traitlets==5.14.2
88
+ - autoawq@https://github.com/casper-hansen/AutoAWQ/releases/download/v0.2.4/autoawq-0.2.4+cu118-cp310-cp310-linux_x86_64.whl
89
+
90
+ ### Hardware
91
+ - Cloud provided: runpod.io
checkpoint-100/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: Weni/WeniGPT-Agents-Mistral-1.0.6-SFT-merged
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
checkpoint-100/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Weni/WeniGPT-Agents-Mistral-1.0.6-SFT-merged",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "v_proj",
24
+ "q_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
checkpoint-100/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49ab6aee408a1c964b817a6ad5c83d8c26a5ccb479f32cf57d230aaf2e57defb
3
+ size 13648432
checkpoint-100/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:902ecb8d0ef612e30cc037259accd8e4c7699582024fc1c24b45164461efb669
3
+ size 27370618
checkpoint-100/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b3ee827a7a00012c0a116546df467feee35e70376d81a7a85b1a70eb90414d3
3
+ size 14244
checkpoint-100/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dcfe6356cdefebe15a59bf5fef698e9a7f17eb204358ae6a2bcdda72aa2b3fad
3
+ size 1064
checkpoint-100/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<unk>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
checkpoint-100/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-100/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
checkpoint-100/tokenizer_config.json ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "additional_special_tokens": [],
31
+ "bos_token": "<s>",
32
+ "chat_template": "{% for message in messages %}{% if message['role'] == 'user' %}{{ bos_token + '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'system' %}{{ '<<SYS>>\\n' + message['content'] + '\\n<</SYS>>\\n\\n' }}{% elif message['role'] == 'assistant' %}{{ ' ' + message['content'] + ' ' + eos_token }}{% endif %}{% endfor %}",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "legacy": true,
36
+ "max_lenght": 8192,
37
+ "max_length": 8192,
38
+ "model_max_length": 1000000000000000019884624838656,
39
+ "pad_token": "<unk>",
40
+ "padding": true,
41
+ "sp_model_kwargs": {},
42
+ "spaces_between_special_tokens": false,
43
+ "stride": 0,
44
+ "tokenizer_class": "LlamaTokenizer",
45
+ "truncation_side": "right",
46
+ "truncation_strategy": "longest_first",
47
+ "unk_token": "<unk>",
48
+ "use_default_system_prompt": false
49
+ }
checkpoint-100/trainer_state.json ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.37998154759407043,
3
+ "best_model_checkpoint": "./mistral/18-04-24-Weni-WeniGPT-Agents-Mistral-1.0.6-SFT-1.0.0-DPO_Experiment on DPO with the best SFT model of WeniGPT-2_max_steps-144_batch_4_2024-04-18_ppid_9/checkpoint-100",
4
+ "epoch": 2.0833333333333335,
5
+ "eval_steps": 50,
6
+ "global_step": 100,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.42,
13
+ "grad_norm": 0.925697386264801,
14
+ "learning_rate": 1.827338129496403e-05,
15
+ "logits/chosen": -1.7669658660888672,
16
+ "logits/rejected": -1.7967182397842407,
17
+ "logps/chosen": -45.212181091308594,
18
+ "logps/rejected": -81.75444793701172,
19
+ "loss": 0.5961,
20
+ "rewards/accuracies": 0.3499999940395355,
21
+ "rewards/chosen": 0.41846054792404175,
22
+ "rewards/margins": 0.40002503991127014,
23
+ "rewards/rejected": 0.018435537815093994,
24
+ "step": 20
25
+ },
26
+ {
27
+ "epoch": 0.83,
28
+ "grad_norm": 0.8009060025215149,
29
+ "learning_rate": 1.5395683453237412e-05,
30
+ "logits/chosen": -1.785089135169983,
31
+ "logits/rejected": -1.8165258169174194,
32
+ "logps/chosen": -52.47802734375,
33
+ "logps/rejected": -98.34720611572266,
34
+ "loss": 0.3687,
35
+ "rewards/accuracies": 0.5375000238418579,
36
+ "rewards/chosen": 1.9883638620376587,
37
+ "rewards/margins": 2.0787856578826904,
38
+ "rewards/rejected": -0.09042160212993622,
39
+ "step": 40
40
+ },
41
+ {
42
+ "epoch": 1.04,
43
+ "eval_logits/chosen": -1.8258248567581177,
44
+ "eval_logits/rejected": -1.8429020643234253,
45
+ "eval_logps/chosen": -52.02402114868164,
46
+ "eval_logps/rejected": -73.01697540283203,
47
+ "eval_loss": 0.3813583552837372,
48
+ "eval_rewards/accuracies": 0.4545454680919647,
49
+ "eval_rewards/chosen": 3.3729493618011475,
50
+ "eval_rewards/margins": 3.772756338119507,
51
+ "eval_rewards/rejected": -0.3998069763183594,
52
+ "eval_runtime": 6.435,
53
+ "eval_samples_per_second": 3.419,
54
+ "eval_steps_per_second": 1.709,
55
+ "step": 50
56
+ },
57
+ {
58
+ "epoch": 1.25,
59
+ "grad_norm": 0.18310827016830444,
60
+ "learning_rate": 1.2517985611510793e-05,
61
+ "logits/chosen": -1.77945077419281,
62
+ "logits/rejected": -1.8140087127685547,
63
+ "logps/chosen": -56.25170135498047,
64
+ "logps/rejected": -105.071044921875,
65
+ "loss": 0.3258,
66
+ "rewards/accuracies": 0.5375000238418579,
67
+ "rewards/chosen": 4.154148578643799,
68
+ "rewards/margins": 5.0598273277282715,
69
+ "rewards/rejected": -0.9056787490844727,
70
+ "step": 60
71
+ },
72
+ {
73
+ "epoch": 1.67,
74
+ "grad_norm": 0.012238968163728714,
75
+ "learning_rate": 9.640287769784174e-06,
76
+ "logits/chosen": -1.810064673423767,
77
+ "logits/rejected": -1.8457552194595337,
78
+ "logps/chosen": -48.826080322265625,
79
+ "logps/rejected": -102.73148345947266,
80
+ "loss": 0.3818,
81
+ "rewards/accuracies": 0.512499988079071,
82
+ "rewards/chosen": 3.933312177658081,
83
+ "rewards/margins": 5.4018402099609375,
84
+ "rewards/rejected": -1.468528151512146,
85
+ "step": 80
86
+ },
87
+ {
88
+ "epoch": 2.08,
89
+ "grad_norm": 0.0,
90
+ "learning_rate": 6.762589928057554e-06,
91
+ "logits/chosen": -1.8146374225616455,
92
+ "logits/rejected": -1.8561128377914429,
93
+ "logps/chosen": -38.55259323120117,
94
+ "logps/rejected": -88.08372497558594,
95
+ "loss": 0.401,
96
+ "rewards/accuracies": 0.4625000059604645,
97
+ "rewards/chosen": 3.7175979614257812,
98
+ "rewards/margins": 5.689229488372803,
99
+ "rewards/rejected": -1.971631646156311,
100
+ "step": 100
101
+ },
102
+ {
103
+ "epoch": 2.08,
104
+ "eval_logits/chosen": -1.844895601272583,
105
+ "eval_logits/rejected": -1.8629944324493408,
106
+ "eval_logps/chosen": -50.96379470825195,
107
+ "eval_logps/rejected": -74.22832489013672,
108
+ "eval_loss": 0.37998154759407043,
109
+ "eval_rewards/accuracies": 0.4545454680919647,
110
+ "eval_rewards/chosen": 3.9030632972717285,
111
+ "eval_rewards/margins": 4.908545970916748,
112
+ "eval_rewards/rejected": -1.0054824352264404,
113
+ "eval_runtime": 6.4357,
114
+ "eval_samples_per_second": 3.418,
115
+ "eval_steps_per_second": 1.709,
116
+ "step": 100
117
+ }
118
+ ],
119
+ "logging_steps": 20,
120
+ "max_steps": 144,
121
+ "num_input_tokens_seen": 0,
122
+ "num_train_epochs": 3,
123
+ "save_steps": 100,
124
+ "total_flos": 0.0,
125
+ "train_batch_size": 2,
126
+ "trial_name": null,
127
+ "trial_params": null
128
+ }
checkpoint-100/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1199f24885569ce8e90c6ed2f43a0c9264a0e8866d1a9efd02249360b6208a64
3
+ size 5240