File size: 3,163 Bytes
80304c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
---
license: cc-by-4.0
language:
- en
pipeline_tag: summarization
tags:
- speaker embedding
- wespeaker
- speaker modelling
---
Official model provided by Wespeaker project, ResNet34 based r-vector (After large margin finetune)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/63b7e3814705f0ed5d7a0b00/wXgoQOaS8TLACe85mDqcj.png)
## Model Sources
<!-- Provide the basic links for the model. -->
- **Repository:** https://github.com/wenet-e2e/wespeaker
- **Paper:** https://arxiv.org/pdf/2210.17016.pdf
- **Demo:** https://huggingface.co/spaces/wenet/wespeaker_demo
## Uses
## Results on VoxCeleb
| Model | Params | Flops | LM | AS-Norm | vox1-O-clean | vox1-E-clean | vox1-H-clean |
|:------|:------:|:------|:--:|:-------:|:------------:|:------------:|:------------:|
| ResNet34-TSTP-emb256 | 6.63M | 4.55G | × | × | 0.867 | 1.049 | 1.959 |
| | | | × | √ | 0.787 | 0.964 | 1.726 |
| | | | √ | × | 0.797 | 0.937 | 1.695 |
| | | | √ | √ | 0.723 | 0.867 | 1.532 |
## Install Wespeaker
``` sh
pip install git+https://github.com/wenet-e2e/wespeaker.git
```
for development install:
``` sh
git clone https://github.com/wenet-e2e/wespeaker.git
cd wespeaker
pip install -e .
```
### Command line Usage
``` sh
$ wespeaker -p ResNet34_download_dir --task embedding --audio_file audio.wav --output_file embedding.txt
$ wespeaker -p ResNet34_download_dir --task embedding_kaldi --wav_scp wav.scp --output_file /path/to/embedding
$ wespeaker -p ResNet34_download_dir --task similarity --audio_file audio.wav --audio_file2 audio2.wav
$ wespeaker -p ResNet34_download_dir --task diarization --audio_file audio.wav
```
### Python Programming Usage
``` python
import wespeaker
model = wespeaker.load_model_local(ResNet34_download_dir)
# set_gpu to enable the cuda inference, number < 0 means using CPU
model.set_gpu(0)
# embedding/embedding_kaldi/similarity/diarization
embedding = model.extract_embedding('audio.wav')
utt_names, embeddings = model.extract_embedding_list('wav.scp')
similarity = model.compute_similarity('audio1.wav', 'audio2.wav')
diar_result = model.diarize('audio.wav')
# register and recognize
model.register('spk1', 'spk1_audio1.wav')
model.register('spk2', 'spk2_audio1.wav')
model.register('spk3', 'spk3_audio1.wav')
result = model.recognize('spk1_audio2.wav')
```
## Citation
```bibtex
@article{zeinali2019rvector,
title={But system description to voxceleb speaker recognition challenge 2019},
author={Zeinali, Hossein and Wang, Shuai and Silnova, Anna and Mat{\v{e}}jka, Pavel and Plchot, Old{\v{r}}ich},
journal={arXiv preprint arXiv:1910.12592},
year={2019}
}
@inproceedings{wang2023wespeaker,
title={Wespeaker: A research and production oriented speaker embedding learning toolkit},
author={Wang, Hongji and Liang, Chengdong and Wang, Shuai and Chen, Zhengyang and Zhang, Binbin and Xiang, Xu and Deng, Yanlei and Qian, Yanmin},
booktitle={IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages={1--5},
year={2023},
organization={IEEE}
}
```
|