File size: 10,429 Bytes
6b99536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
# # For a single image
# python app.py image.jpg

# # For a single directory
# python app.py /path/to/directory

# # For multiple directories
# python app.py /path/to/directory1 /path/to/directory2 /path/to/directory3

# # With output directory specified
# python app.py /path/to/directory1 /path/to/directory2 --output /path/to/output

# # With batch size specified
# python app.py /path/to/directory1 /path/to/directory2 --bs 8

import torch
import torch.amp.autocast_mode
import os
import sys
import logging
import warnings
import argparse
from PIL import Image
from pathlib import Path
from tqdm import tqdm
from torch import nn
from transformers import AutoModel, AutoProcessor, AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast, AutoModelForCausalLM
from typing import List

CLIP_PATH = "google/siglip-so400m-patch14-384"
VLM_PROMPT = "A descriptive caption for this image:\n"
MODEL_PATH = "unsloth/Meta-Llama-3.1-8B-bnb-4bit"
CHECKPOINT_PATH = Path("wpkklhc6")
warnings.filterwarnings("ignore", category=UserWarning)

class ImageAdapter(nn.Module):
    def __init__(self, input_features: int, output_features: int):
        super().__init__()
        self.linear1 = nn.Linear(input_features, output_features)
        self.activation = nn.GELU()
        self.linear2 = nn.Linear(output_features, output_features)
    
    def forward(self, vision_outputs: torch.Tensor):
        x = self.linear1(vision_outputs)
        x = self.activation(x)
        x = self.linear2(x)
        return x

# Load CLIP
print("Loading CLIP πŸ“Ž")
clip_processor = AutoProcessor.from_pretrained(CLIP_PATH)
clip_model = AutoModel.from_pretrained(CLIP_PATH)
clip_model = clip_model.vision_model
clip_model.eval()
clip_model.requires_grad_(False)
clip_model.to("cuda")

# Tokenizer
print("Loading tokenizer πŸͺ™")
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, use_fast=False)
assert isinstance(tokenizer, PreTrainedTokenizer) or isinstance(tokenizer, PreTrainedTokenizerFast), f"Tokenizer is of type {type(tokenizer)}"

# LLM
print("Loading LLM πŸ€–")
logging.getLogger("transformers").setLevel(logging.ERROR)
text_model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto", torch_dtype=torch.bfloat16)
text_model.eval()

# Image Adapter
print("Loading image adapter πŸ–ΌοΈ")
image_adapter = ImageAdapter(clip_model.config.hidden_size, text_model.config.hidden_size)
image_adapter.load_state_dict(torch.load(CHECKPOINT_PATH / "image_adapter.pt", map_location="cpu", weights_only=True))
image_adapter.eval()
image_adapter.to("cuda")

@torch.no_grad()
def stream_chat(input_images: List[Image.Image], batch_size=4, pbar=None):
    torch.cuda.empty_cache()
    all_captions = []

    if not isinstance(input_images, list):
        input_images = [input_images]

    for i in range(0, len(input_images), batch_size):
        batch = input_images[i:i+batch_size]
        
        # Preprocess image batch
        try:
            images = clip_processor(images=batch, return_tensors='pt', padding=True).pixel_values
        except ValueError as e:
            print(f"Error processing image batch: {e}")
            print("Skipping this batch and continuing...")
            continue

        images = images.to('cuda')

        # Embed image batch
        with torch.amp.autocast_mode.autocast('cuda', enabled=True):
            vision_outputs = clip_model(pixel_values=images, output_hidden_states=True)
            image_features = vision_outputs.hidden_states[-2]
            embedded_images = image_adapter(image_features)
            embedded_images = embedded_images.to(dtype=torch.bfloat16)

        # Embed prompt
        prompt = tokenizer.encode(VLM_PROMPT, return_tensors='pt')
        prompt_embeds = text_model.model.embed_tokens(prompt.to('cuda')).to(dtype=torch.bfloat16)
        embedded_bos = text_model.model.embed_tokens(torch.tensor([[tokenizer.bos_token_id]], device=text_model.device, dtype=torch.int64)).to(dtype=torch.bfloat16)

        # Construct prompts
        inputs_embeds = torch.cat([
            embedded_bos.expand(embedded_images.shape[0], -1, -1),
            embedded_images,
            prompt_embeds.expand(embedded_images.shape[0], -1, -1),
        ], dim=1).to(dtype=torch.bfloat16)

        input_ids = torch.cat([
            torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long).expand(embedded_images.shape[0], -1),
            torch.zeros((embedded_images.shape[0], embedded_images.shape[1]), dtype=torch.long),
            prompt.expand(embedded_images.shape[0], -1),
        ], dim=1).to('cuda')

        attention_mask = torch.ones_like(input_ids)

        generate_ids = text_model.generate(
            input_ids=input_ids,
            inputs_embeds=inputs_embeds,
            attention_mask=attention_mask,
            max_new_tokens=300,
            do_sample=True,
            top_k=10,
            temperature=0.5,
        )

        if pbar:
            pbar.update(len(batch))

        # Trim off the prompt
        generate_ids = generate_ids[:, input_ids.shape[1]:]

        for ids in generate_ids:
            if ids[-1] == tokenizer.eos_token_id:
                ids = ids[:-1]
            caption = tokenizer.decode(ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
            # Remove any remaining special tokens
            caption = caption.replace('<|end_of_text|>', '').replace('<|finetune_right_pad_id|>', '').strip()
            all_captions.append(caption)

    return all_captions

def preprocess_image(img):
    return img.convert('RGBA')

def process_image(image_path, output_path, pbar=None):
    try:
        with Image.open(image_path) as img:
            # Convert image to RGB
            img = img.convert('RGB')
            caption = stream_chat([img], pbar=pbar)[0]
            with open(output_path, 'w', encoding='utf-8') as f:
                f.write(caption)
    except Exception as e:
        print(f"Error processing {image_path}: {e}")
    if pbar:
        pbar.update(1)
        return

    with Image.open(image_path) as img:
        # Pass the image as a list to stream_chat
        caption = stream_chat([img], pbar=pbar)[0]  # Get the first (and only) caption

    with open(output_path, 'w', encoding='utf-8') as f:
        f.write(caption)

def process_directory(input_dir, output_dir, batch_size):
    input_path = Path(input_dir)
    output_path = Path(output_dir)
    output_path.mkdir(parents=True, exist_ok=True)

    image_extensions = ('.jpg', '.jpeg', '.png', '.bmp', '.webp')
    image_files = [f for f in input_path.iterdir() if f.suffix.lower() in image_extensions]

    # Create a list to store images that need processing
    images_to_process = []

    # Check which images need processing
    for file in image_files:
        output_file = output_path / (file.stem + '.txt')
        if not output_file.exists():
            images_to_process.append(file)
        else:
            print(f"Skipping {file.name} - Caption already exists")

    # Process images in batches
    with tqdm(total=len(images_to_process), desc="Processing images", unit="image") as pbar:
        for i in range(0, len(images_to_process), batch_size):
            batch_files = images_to_process[i:i+batch_size]
            batch_images = []
            for f in batch_files:
                try:
                    img = Image.open(f).convert('RGB')
                    batch_images.append(img)
                except Exception as e:
                    print(f"Error opening {f}: {e}")
                    continue

            if batch_images:
                captions = stream_chat(batch_images, batch_size, pbar)
                for file, caption in zip(batch_files, captions):
                    output_file = output_path / (file.stem + '.txt')
                    with open(output_file, 'w', encoding='utf-8') as f:
                        f.write(caption)

            # Close the image files
            for img in batch_images:
                img.close()

def parse_arguments():
    parser = argparse.ArgumentParser(description="Process images and generate captions.")
    parser.add_argument("input", nargs='+', help="Input image file or directory (or multiple directories)")
    parser.add_argument("--output", help="Output directory (optional)")
    parser.add_argument("--bs", type=int, default=4, help="Batch size (default: 4)")
    return parser.parse_args()

def is_image_file(file_path):
    image_extensions = ('.jpg', '.jpeg', '.png', '.bmp', '.webp')
    return Path(file_path).suffix.lower() in image_extensions

# Main execution
if __name__ == "__main__":
    args = parse_arguments()
    input_paths = [Path(input_path) for input_path in args.input]
    batch_size = args.bs

    for input_path in input_paths:
        if input_path.is_file() and is_image_file(input_path):
            # Single file processing
            output_path = input_path.with_suffix('.txt')
            print(f"Processing single image 🎞️: {input_path.name}")
            with tqdm(total=1, desc="Processing image", unit="image") as pbar:
                process_image(input_path, output_path, pbar)
            print(f"Output saved to {output_path}")
        elif input_path.is_dir():
            # Directory processing
            output_path = Path(args.output) if args.output else input_path
            print(f"Processing directory πŸ“: {input_path}")
            print(f"Output directory πŸ“¦: {output_path}")
            print(f"Batch size πŸ—„οΈ: {batch_size}")
            process_directory(input_path, output_path, batch_size)
        else:
            print(f"Invalid input: {input_path}")
            print("Skipping...")

    if not input_paths:
        print("Usage:")
        print("For single image: python app.py [image_file] [--bs batch_size]")
        print("For directory (same input/output): python app.py [directory] [--bs batch_size]")
        print("For directory (separate input/output): python app.py [directory] --output [output_directory] [--bs batch_size]")
        print("For multiple directories: python app.py [directory1] [directory2] ... [--output output_directory] [--bs batch_size]")
        sys.exit(1)