File size: 10,429 Bytes
6b99536 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
# # For a single image
# python app.py image.jpg
# # For a single directory
# python app.py /path/to/directory
# # For multiple directories
# python app.py /path/to/directory1 /path/to/directory2 /path/to/directory3
# # With output directory specified
# python app.py /path/to/directory1 /path/to/directory2 --output /path/to/output
# # With batch size specified
# python app.py /path/to/directory1 /path/to/directory2 --bs 8
import torch
import torch.amp.autocast_mode
import os
import sys
import logging
import warnings
import argparse
from PIL import Image
from pathlib import Path
from tqdm import tqdm
from torch import nn
from transformers import AutoModel, AutoProcessor, AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast, AutoModelForCausalLM
from typing import List
CLIP_PATH = "google/siglip-so400m-patch14-384"
VLM_PROMPT = "A descriptive caption for this image:\n"
MODEL_PATH = "unsloth/Meta-Llama-3.1-8B-bnb-4bit"
CHECKPOINT_PATH = Path("wpkklhc6")
warnings.filterwarnings("ignore", category=UserWarning)
class ImageAdapter(nn.Module):
def __init__(self, input_features: int, output_features: int):
super().__init__()
self.linear1 = nn.Linear(input_features, output_features)
self.activation = nn.GELU()
self.linear2 = nn.Linear(output_features, output_features)
def forward(self, vision_outputs: torch.Tensor):
x = self.linear1(vision_outputs)
x = self.activation(x)
x = self.linear2(x)
return x
# Load CLIP
print("Loading CLIP π")
clip_processor = AutoProcessor.from_pretrained(CLIP_PATH)
clip_model = AutoModel.from_pretrained(CLIP_PATH)
clip_model = clip_model.vision_model
clip_model.eval()
clip_model.requires_grad_(False)
clip_model.to("cuda")
# Tokenizer
print("Loading tokenizer πͺ")
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, use_fast=False)
assert isinstance(tokenizer, PreTrainedTokenizer) or isinstance(tokenizer, PreTrainedTokenizerFast), f"Tokenizer is of type {type(tokenizer)}"
# LLM
print("Loading LLM π€")
logging.getLogger("transformers").setLevel(logging.ERROR)
text_model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto", torch_dtype=torch.bfloat16)
text_model.eval()
# Image Adapter
print("Loading image adapter πΌοΈ")
image_adapter = ImageAdapter(clip_model.config.hidden_size, text_model.config.hidden_size)
image_adapter.load_state_dict(torch.load(CHECKPOINT_PATH / "image_adapter.pt", map_location="cpu", weights_only=True))
image_adapter.eval()
image_adapter.to("cuda")
@torch.no_grad()
def stream_chat(input_images: List[Image.Image], batch_size=4, pbar=None):
torch.cuda.empty_cache()
all_captions = []
if not isinstance(input_images, list):
input_images = [input_images]
for i in range(0, len(input_images), batch_size):
batch = input_images[i:i+batch_size]
# Preprocess image batch
try:
images = clip_processor(images=batch, return_tensors='pt', padding=True).pixel_values
except ValueError as e:
print(f"Error processing image batch: {e}")
print("Skipping this batch and continuing...")
continue
images = images.to('cuda')
# Embed image batch
with torch.amp.autocast_mode.autocast('cuda', enabled=True):
vision_outputs = clip_model(pixel_values=images, output_hidden_states=True)
image_features = vision_outputs.hidden_states[-2]
embedded_images = image_adapter(image_features)
embedded_images = embedded_images.to(dtype=torch.bfloat16)
# Embed prompt
prompt = tokenizer.encode(VLM_PROMPT, return_tensors='pt')
prompt_embeds = text_model.model.embed_tokens(prompt.to('cuda')).to(dtype=torch.bfloat16)
embedded_bos = text_model.model.embed_tokens(torch.tensor([[tokenizer.bos_token_id]], device=text_model.device, dtype=torch.int64)).to(dtype=torch.bfloat16)
# Construct prompts
inputs_embeds = torch.cat([
embedded_bos.expand(embedded_images.shape[0], -1, -1),
embedded_images,
prompt_embeds.expand(embedded_images.shape[0], -1, -1),
], dim=1).to(dtype=torch.bfloat16)
input_ids = torch.cat([
torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long).expand(embedded_images.shape[0], -1),
torch.zeros((embedded_images.shape[0], embedded_images.shape[1]), dtype=torch.long),
prompt.expand(embedded_images.shape[0], -1),
], dim=1).to('cuda')
attention_mask = torch.ones_like(input_ids)
generate_ids = text_model.generate(
input_ids=input_ids,
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
max_new_tokens=300,
do_sample=True,
top_k=10,
temperature=0.5,
)
if pbar:
pbar.update(len(batch))
# Trim off the prompt
generate_ids = generate_ids[:, input_ids.shape[1]:]
for ids in generate_ids:
if ids[-1] == tokenizer.eos_token_id:
ids = ids[:-1]
caption = tokenizer.decode(ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
# Remove any remaining special tokens
caption = caption.replace('<|end_of_text|>', '').replace('<|finetune_right_pad_id|>', '').strip()
all_captions.append(caption)
return all_captions
def preprocess_image(img):
return img.convert('RGBA')
def process_image(image_path, output_path, pbar=None):
try:
with Image.open(image_path) as img:
# Convert image to RGB
img = img.convert('RGB')
caption = stream_chat([img], pbar=pbar)[0]
with open(output_path, 'w', encoding='utf-8') as f:
f.write(caption)
except Exception as e:
print(f"Error processing {image_path}: {e}")
if pbar:
pbar.update(1)
return
with Image.open(image_path) as img:
# Pass the image as a list to stream_chat
caption = stream_chat([img], pbar=pbar)[0] # Get the first (and only) caption
with open(output_path, 'w', encoding='utf-8') as f:
f.write(caption)
def process_directory(input_dir, output_dir, batch_size):
input_path = Path(input_dir)
output_path = Path(output_dir)
output_path.mkdir(parents=True, exist_ok=True)
image_extensions = ('.jpg', '.jpeg', '.png', '.bmp', '.webp')
image_files = [f for f in input_path.iterdir() if f.suffix.lower() in image_extensions]
# Create a list to store images that need processing
images_to_process = []
# Check which images need processing
for file in image_files:
output_file = output_path / (file.stem + '.txt')
if not output_file.exists():
images_to_process.append(file)
else:
print(f"Skipping {file.name} - Caption already exists")
# Process images in batches
with tqdm(total=len(images_to_process), desc="Processing images", unit="image") as pbar:
for i in range(0, len(images_to_process), batch_size):
batch_files = images_to_process[i:i+batch_size]
batch_images = []
for f in batch_files:
try:
img = Image.open(f).convert('RGB')
batch_images.append(img)
except Exception as e:
print(f"Error opening {f}: {e}")
continue
if batch_images:
captions = stream_chat(batch_images, batch_size, pbar)
for file, caption in zip(batch_files, captions):
output_file = output_path / (file.stem + '.txt')
with open(output_file, 'w', encoding='utf-8') as f:
f.write(caption)
# Close the image files
for img in batch_images:
img.close()
def parse_arguments():
parser = argparse.ArgumentParser(description="Process images and generate captions.")
parser.add_argument("input", nargs='+', help="Input image file or directory (or multiple directories)")
parser.add_argument("--output", help="Output directory (optional)")
parser.add_argument("--bs", type=int, default=4, help="Batch size (default: 4)")
return parser.parse_args()
def is_image_file(file_path):
image_extensions = ('.jpg', '.jpeg', '.png', '.bmp', '.webp')
return Path(file_path).suffix.lower() in image_extensions
# Main execution
if __name__ == "__main__":
args = parse_arguments()
input_paths = [Path(input_path) for input_path in args.input]
batch_size = args.bs
for input_path in input_paths:
if input_path.is_file() and is_image_file(input_path):
# Single file processing
output_path = input_path.with_suffix('.txt')
print(f"Processing single image ποΈ: {input_path.name}")
with tqdm(total=1, desc="Processing image", unit="image") as pbar:
process_image(input_path, output_path, pbar)
print(f"Output saved to {output_path}")
elif input_path.is_dir():
# Directory processing
output_path = Path(args.output) if args.output else input_path
print(f"Processing directory π: {input_path}")
print(f"Output directory π¦: {output_path}")
print(f"Batch size ποΈ: {batch_size}")
process_directory(input_path, output_path, batch_size)
else:
print(f"Invalid input: {input_path}")
print("Skipping...")
if not input_paths:
print("Usage:")
print("For single image: python app.py [image_file] [--bs batch_size]")
print("For directory (same input/output): python app.py [directory] [--bs batch_size]")
print("For directory (separate input/output): python app.py [directory] --output [output_directory] [--bs batch_size]")
print("For multiple directories: python app.py [directory1] [directory2] ... [--output output_directory] [--bs batch_size]")
sys.exit(1) |