Wi-zz's picture
Upload folder using huggingface_hub
6b99536 verified
raw
history blame
10.4 kB
# # For a single image
# python app.py image.jpg
# # For a single directory
# python app.py /path/to/directory
# # For multiple directories
# python app.py /path/to/directory1 /path/to/directory2 /path/to/directory3
# # With output directory specified
# python app.py /path/to/directory1 /path/to/directory2 --output /path/to/output
# # With batch size specified
# python app.py /path/to/directory1 /path/to/directory2 --bs 8
import torch
import torch.amp.autocast_mode
import os
import sys
import logging
import warnings
import argparse
from PIL import Image
from pathlib import Path
from tqdm import tqdm
from torch import nn
from transformers import AutoModel, AutoProcessor, AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast, AutoModelForCausalLM
from typing import List
CLIP_PATH = "google/siglip-so400m-patch14-384"
VLM_PROMPT = "A descriptive caption for this image:\n"
MODEL_PATH = "unsloth/Meta-Llama-3.1-8B-bnb-4bit"
CHECKPOINT_PATH = Path("wpkklhc6")
warnings.filterwarnings("ignore", category=UserWarning)
class ImageAdapter(nn.Module):
def __init__(self, input_features: int, output_features: int):
super().__init__()
self.linear1 = nn.Linear(input_features, output_features)
self.activation = nn.GELU()
self.linear2 = nn.Linear(output_features, output_features)
def forward(self, vision_outputs: torch.Tensor):
x = self.linear1(vision_outputs)
x = self.activation(x)
x = self.linear2(x)
return x
# Load CLIP
print("Loading CLIP πŸ“Ž")
clip_processor = AutoProcessor.from_pretrained(CLIP_PATH)
clip_model = AutoModel.from_pretrained(CLIP_PATH)
clip_model = clip_model.vision_model
clip_model.eval()
clip_model.requires_grad_(False)
clip_model.to("cuda")
# Tokenizer
print("Loading tokenizer πŸͺ™")
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, use_fast=False)
assert isinstance(tokenizer, PreTrainedTokenizer) or isinstance(tokenizer, PreTrainedTokenizerFast), f"Tokenizer is of type {type(tokenizer)}"
# LLM
print("Loading LLM πŸ€–")
logging.getLogger("transformers").setLevel(logging.ERROR)
text_model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto", torch_dtype=torch.bfloat16)
text_model.eval()
# Image Adapter
print("Loading image adapter πŸ–ΌοΈ")
image_adapter = ImageAdapter(clip_model.config.hidden_size, text_model.config.hidden_size)
image_adapter.load_state_dict(torch.load(CHECKPOINT_PATH / "image_adapter.pt", map_location="cpu", weights_only=True))
image_adapter.eval()
image_adapter.to("cuda")
@torch.no_grad()
def stream_chat(input_images: List[Image.Image], batch_size=4, pbar=None):
torch.cuda.empty_cache()
all_captions = []
if not isinstance(input_images, list):
input_images = [input_images]
for i in range(0, len(input_images), batch_size):
batch = input_images[i:i+batch_size]
# Preprocess image batch
try:
images = clip_processor(images=batch, return_tensors='pt', padding=True).pixel_values
except ValueError as e:
print(f"Error processing image batch: {e}")
print("Skipping this batch and continuing...")
continue
images = images.to('cuda')
# Embed image batch
with torch.amp.autocast_mode.autocast('cuda', enabled=True):
vision_outputs = clip_model(pixel_values=images, output_hidden_states=True)
image_features = vision_outputs.hidden_states[-2]
embedded_images = image_adapter(image_features)
embedded_images = embedded_images.to(dtype=torch.bfloat16)
# Embed prompt
prompt = tokenizer.encode(VLM_PROMPT, return_tensors='pt')
prompt_embeds = text_model.model.embed_tokens(prompt.to('cuda')).to(dtype=torch.bfloat16)
embedded_bos = text_model.model.embed_tokens(torch.tensor([[tokenizer.bos_token_id]], device=text_model.device, dtype=torch.int64)).to(dtype=torch.bfloat16)
# Construct prompts
inputs_embeds = torch.cat([
embedded_bos.expand(embedded_images.shape[0], -1, -1),
embedded_images,
prompt_embeds.expand(embedded_images.shape[0], -1, -1),
], dim=1).to(dtype=torch.bfloat16)
input_ids = torch.cat([
torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long).expand(embedded_images.shape[0], -1),
torch.zeros((embedded_images.shape[0], embedded_images.shape[1]), dtype=torch.long),
prompt.expand(embedded_images.shape[0], -1),
], dim=1).to('cuda')
attention_mask = torch.ones_like(input_ids)
generate_ids = text_model.generate(
input_ids=input_ids,
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
max_new_tokens=300,
do_sample=True,
top_k=10,
temperature=0.5,
)
if pbar:
pbar.update(len(batch))
# Trim off the prompt
generate_ids = generate_ids[:, input_ids.shape[1]:]
for ids in generate_ids:
if ids[-1] == tokenizer.eos_token_id:
ids = ids[:-1]
caption = tokenizer.decode(ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
# Remove any remaining special tokens
caption = caption.replace('<|end_of_text|>', '').replace('<|finetune_right_pad_id|>', '').strip()
all_captions.append(caption)
return all_captions
def preprocess_image(img):
return img.convert('RGBA')
def process_image(image_path, output_path, pbar=None):
try:
with Image.open(image_path) as img:
# Convert image to RGB
img = img.convert('RGB')
caption = stream_chat([img], pbar=pbar)[0]
with open(output_path, 'w', encoding='utf-8') as f:
f.write(caption)
except Exception as e:
print(f"Error processing {image_path}: {e}")
if pbar:
pbar.update(1)
return
with Image.open(image_path) as img:
# Pass the image as a list to stream_chat
caption = stream_chat([img], pbar=pbar)[0] # Get the first (and only) caption
with open(output_path, 'w', encoding='utf-8') as f:
f.write(caption)
def process_directory(input_dir, output_dir, batch_size):
input_path = Path(input_dir)
output_path = Path(output_dir)
output_path.mkdir(parents=True, exist_ok=True)
image_extensions = ('.jpg', '.jpeg', '.png', '.bmp', '.webp')
image_files = [f for f in input_path.iterdir() if f.suffix.lower() in image_extensions]
# Create a list to store images that need processing
images_to_process = []
# Check which images need processing
for file in image_files:
output_file = output_path / (file.stem + '.txt')
if not output_file.exists():
images_to_process.append(file)
else:
print(f"Skipping {file.name} - Caption already exists")
# Process images in batches
with tqdm(total=len(images_to_process), desc="Processing images", unit="image") as pbar:
for i in range(0, len(images_to_process), batch_size):
batch_files = images_to_process[i:i+batch_size]
batch_images = []
for f in batch_files:
try:
img = Image.open(f).convert('RGB')
batch_images.append(img)
except Exception as e:
print(f"Error opening {f}: {e}")
continue
if batch_images:
captions = stream_chat(batch_images, batch_size, pbar)
for file, caption in zip(batch_files, captions):
output_file = output_path / (file.stem + '.txt')
with open(output_file, 'w', encoding='utf-8') as f:
f.write(caption)
# Close the image files
for img in batch_images:
img.close()
def parse_arguments():
parser = argparse.ArgumentParser(description="Process images and generate captions.")
parser.add_argument("input", nargs='+', help="Input image file or directory (or multiple directories)")
parser.add_argument("--output", help="Output directory (optional)")
parser.add_argument("--bs", type=int, default=4, help="Batch size (default: 4)")
return parser.parse_args()
def is_image_file(file_path):
image_extensions = ('.jpg', '.jpeg', '.png', '.bmp', '.webp')
return Path(file_path).suffix.lower() in image_extensions
# Main execution
if __name__ == "__main__":
args = parse_arguments()
input_paths = [Path(input_path) for input_path in args.input]
batch_size = args.bs
for input_path in input_paths:
if input_path.is_file() and is_image_file(input_path):
# Single file processing
output_path = input_path.with_suffix('.txt')
print(f"Processing single image 🎞️: {input_path.name}")
with tqdm(total=1, desc="Processing image", unit="image") as pbar:
process_image(input_path, output_path, pbar)
print(f"Output saved to {output_path}")
elif input_path.is_dir():
# Directory processing
output_path = Path(args.output) if args.output else input_path
print(f"Processing directory πŸ“: {input_path}")
print(f"Output directory πŸ“¦: {output_path}")
print(f"Batch size πŸ—„οΈ: {batch_size}")
process_directory(input_path, output_path, batch_size)
else:
print(f"Invalid input: {input_path}")
print("Skipping...")
if not input_paths:
print("Usage:")
print("For single image: python app.py [image_file] [--bs batch_size]")
print("For directory (same input/output): python app.py [directory] [--bs batch_size]")
print("For directory (separate input/output): python app.py [directory] --output [output_directory] [--bs batch_size]")
print("For multiple directories: python app.py [directory1] [directory2] ... [--output output_directory] [--bs batch_size]")
sys.exit(1)