Feature Extraction
Transformers
Safetensors
diva
custom_code
File size: 13,543 Bytes
547936a
 
 
 
 
 
 
 
 
 
 
 
48b107a
547936a
 
 
d41acc6
547936a
d41acc6
547936a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd5984d
49f38f9
547936a
 
 
cd5984d
547936a
 
d41acc6
547936a
d41acc6
547936a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d41acc6
 
 
547936a
 
 
d41acc6
547936a
 
d41acc6
547936a
 
 
 
 
 
d41acc6
547936a
d41acc6
547936a
 
 
49f38f9
f79cc7c
49f38f9
547936a
 
 
 
 
 
 
 
 
 
 
bf4916e
547936a
 
 
 
 
 
 
 
bf4916e
547936a
 
 
b5e9bbc
 
 
 
 
 
bf4916e
547936a
 
 
 
 
 
2a901db
547936a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d41acc6
547936a
 
d41acc6
 
547936a
 
 
 
d41acc6
547936a
d41acc6
547936a
 
 
 
 
 
 
 
49f38f9
547936a
49f38f9
 
 
 
 
 
547936a
 
 
 
 
 
 
 
d41acc6
49f38f9
 
547936a
259eb63
547936a
49f38f9
 
 
 
 
 
547936a
 
 
49f38f9
 
 
 
 
 
 
 
 
 
 
 
547936a
 
 
d41acc6
547936a
d41acc6
49f38f9
 
 
547936a
 
 
49f38f9
547936a
d41acc6
547936a
d41acc6
547936a
 
 
 
 
49f38f9
547936a
 
 
 
 
 
 
 
 
 
 
 
 
 
49f38f9
 
bd8b270
 
49f38f9
 
 
d41acc6
547936a
49f38f9
b7ca827
 
49f38f9
 
 
 
 
 
f7f3973
 
b7ca827
 
a7ff5b3
b7ca827
 
 
 
 
d41acc6
b7ca827
 
 
 
 
 
 
 
 
 
 
 
d41acc6
b7ca827
d41acc6
b7ca827
 
 
 
f7f3973
b7ca827
 
 
 
d41acc6
49f38f9
d41acc6
1310f5e
b7ca827
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d41acc6
b7ca827
f7f3973
 
 
 
 
 
 
 
 
 
49f38f9
 
f7f3973
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
import copy
import json
import os
from typing import Optional, Union

import librosa
import numpy as np
import torch
import torch.nn.functional as F
from datasets import Audio
from safetensors.torch import load, load_model
from torch import nn
from .configuring_diva import DiVAConfig
from transformers import (
    AutoProcessor,
    AutoTokenizer,
    AutoModelForCausalLM,
    PreTrainedModel,
    WhisperModel,
)


class WhisperConnector(nn.Module):
    def __init__(
        self,
    ):
        super().__init__()
        self.decoder = None
        self.projection = nn.Linear(1280, 4096)
        self.query_tokens = nn.Parameter(torch.randn(448, 1280))

    def forward(self, x, output_device="cuda:1"):
        bsz = x.shape[0]
        query_tokens = self.query_tokens[None, :, :].expand(bsz, -1, -1)
        virt_whisper_tokens = self.decoder(
            inputs_embeds=query_tokens, encoder_hidden_states=x
        )
        if self.projection.weight.shape[-1] == 5120:
            virtual_tokens = self.projection(virt_whisper_tokens[0].reshape(112, 5120))
        else:
            virtual_tokens = self.projection(virt_whisper_tokens[0])
        return virtual_tokens.to(output_device)


class DiVAModel(PreTrainedModel):
    config_class = DiVAConfig

    def __init__(
        self, via_path=None, config_dict={}, device_map=None, speech_encoder_device=None
    ):
        super().__init__(DiVAConfig.from_dict(config_dict))
        if speech_encoder_device is None:
            speech_encoder_device = "cuda:0"
        whisper = WhisperModel.from_pretrained(config_dict["reference_encoder"])
        connector = WhisperConnector()
        connector.decoder = copy.deepcopy(whisper.decoder)
        if via_path is not None:
            with open(via_path, "rb") as f:
                sd = load(f.read())

            with torch.no_grad():
                connector.query_tokens = nn.Parameter(sd["query_tokens"])
                connector.projection.weight = nn.Parameter(sd["projection.weight"].T)
                connector.projection.bias = nn.Parameter(sd["projection.bias"])
                wsd = {
                    key.replace("connector.", ""): sd[key]
                    for key in sd
                    if key.startswith("connector.")
                }
                connector.decoder.load_state_dict(wsd)

        if device_map == None:
            num_layers = 32
            num_gpus = 2
            device_map = dict(
                **{"model.embed_tokens": 1, "model.norm": 1, "lm_head": 2},
                **{
                    "model.layers." + str(i): 1 + (i // (num_layers // num_gpus))
                    for i in range(num_layers)
                },
            )

        self.connector = connector.to(speech_encoder_device)
        self.whisper_encoder = whisper.encoder.to(speech_encoder_device)
        self.llm_decoder = AutoModelForCausalLM.from_pretrained(
            config_dict["reference_decoder"],
            device_map=device_map,
            torch_dtype=torch.float16,
        )
        self.processor = AutoProcessor.from_pretrained(config_dict["reference_encoder"])
        self.tokenizer = AutoTokenizer.from_pretrained("WillHeld/via-llama")
        self.prefix = torch.tensor([128000, 128006, 882, 128007, 271]).to(
            self.llm_decoder.model.embed_tokens.weight.device
        )

        self.pre_user_suffix = torch.tensor(
            self.tokenizer.encode(
                "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n"
            )
        ).to(self.llm_decoder.model.embed_tokens.weight.device)
        self.final_header = torch.tensor([128009, 128006, 78191, 128007, 271]).to(
            self.llm_decoder.model.embed_tokens.weight.device
        )
        self.speech_encoder_device = speech_encoder_device

    def can_generate(cls):
        return False

    @classmethod
    def from_pretrained(
        cls,
        pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
        *model_args,
        config=None,
        cache_dir=None,
        **kwargs,
    ):
        if os.path.isdir(pretrained_model_name_or_path):
            via_path = (
                pretrained_model_name_or_path + "/model.safetensors"
            )
            config_path = pretrained_model_name_or_path + "/config.json"
        else:
            # Loading from huggingface repo
            from huggingface_hub import hf_hub_download

            hf_hub_download(
                repo_id=pretrained_model_name_or_path,
                filename="model.safetensors",
                token=kwargs.get("token", None),
                local_dir=os.path.dirname(__file__),
            )
            hf_hub_download(
                repo_id=pretrained_model_name_or_path,
                filename="config.json",
                token=kwargs.get("token", None),
                local_dir=os.path.dirname(__file__),
            )
            via_path = os.path.dirname(__file__) + "/model.safetensors"
            config_path = os.path.dirname(__file__) + "/config.json"
        with open(config_path, "r") as f:
            config_dict = json.loads(f.read())
        return cls(
            via_path,
            config_dict,
            kwargs["device_map"] if "device_map" in kwargs else "auto",
            (
                kwargs["speech_encoder_device"]
                if "speech_encoder_device" in kwargs
                else None
            ),
        )

    def forward(self, audio, prefix_text_tokens, suffix_text_tokens):
        inputs = self.processor(audio, return_tensors="pt", sampling_rate=16_000)
        input_features = inputs.input_features.to(self.speech_encoder_device)
        hidden_states = self.whisper_encoder(input_features=input_features)[
            "last_hidden_state"
        ]
        virt_tokens = self.connector(
            hidden_states,
            output_device=self.llm_decoder.model.embed_tokens.weight.device,
        ).squeeze()

        prefix_embed = self.llm_decoder.model.embed_tokens(prefix_text_tokens)
        suffix_embed = self.llm_decoder.model.embed_tokens(suffix_text_tokens)
        inputs_embeds = torch.cat(
            [prefix_embed, virt_tokens, suffix_embed], axis=0
        ).unsqueeze(0)

        outputs = self.llm_decoder(
            inputs_embeds=inputs_embeds.to(
                self.llm_decoder.model.embed_tokens.weight.device
            ).half(),
            return_dict=True,
            output_hidden_states=True,
            past_key_values=past_key_values,
        )

        return outputs

    @torch.no_grad()
    def generate(
        self,
        audio,
        text_prompt=None,
        do_sample=False,
        logits_processor=None,
        max_new_tokens=128,
    ):
        inputs = self.processor(audio, return_tensors="pt", sampling_rate=16_000)
        input_features = inputs.input_features.to(self.speech_encoder_device)
        hidden_states = self.whisper_encoder(input_features=input_features)[
            "last_hidden_state"
        ]
        virt_tokens = self.connector(
            hidden_states,
            output_device=self.llm_decoder.model.embed_tokens.weight.device,
        )
        bsz = virt_tokens.shape[0]

        if text_prompt != None and text_prompt != "":
            user_prompt_text = torch.tensor(
                self.tokenizer(
                    text_prompt,
                    add_special_tokens=False,
                    padding=True,
                    padding_side="right",
                )["input_ids"],
                device=self.pre_user_suffix.device,
            )
            prefix = torch.cat(
                [
                    self.pre_user_suffix.expand(
                        bsz,
                        -1,
                    ),
                    user_prompt_text,
                    self.prefix.expand(
                        bsz,
                        -1,
                    ),
                ],
                axis=1,
            )
        else:
            prefix = self.prefix
        prefix_embed = self.llm_decoder.model.embed_tokens(prefix).expand(bsz, -1, -1)
        suffix = self.final_header
        suffix_embed = self.llm_decoder.model.embed_tokens(suffix).expand(bsz, -1, -1)
        inputs_embeds = torch.cat([prefix_embed, virt_tokens, suffix_embed], axis=1)
        outs = [[] for i in range(bsz)]
        complete = [False] * bsz
        outputs = None
        greedy = 1
        i = 0
        while not all(complete) and len(outs[0]) < max_new_tokens:
            past_key_values = outputs.past_key_values if outputs else None
            outputs = self.llm_decoder(
                inputs_embeds=inputs_embeds.to(
                    self.llm_decoder.model.embed_tokens.weight.device
                ).half(),
                return_dict=True,
                output_hidden_states=True,
                past_key_values=past_key_values,
            )
            next_token_logits = outputs.logits[:, -1, :]

            if logits_processor:
                local_outs = torch.tensor(outs) if outs != [] else suffix
                local_outs = local_outs.reshape(1, -1)
                next_token_logits = logits_processor(
                    local_outs,
                    next_token_logits.reshape(1, -1),
                )
                next_token_logits = next_token_logits.flatten()
            if do_sample:
                logits = next_token_logits / temperature
                probs = F.softmax(logits, dim=-1)
                greedy = torch.multinomial(probs, num_samples=1)[0]
            else:
                greedy = next_token_logits.argmax(dim=-1)
            for token_index, out in enumerate(greedy.flatten().tolist()):
                if not complete[token_index]:
                    outs[token_index].append(out)
                if out == 128009:
                    complete[token_index] = True

            next_embed = self.llm_decoder.model.embed_tokens(greedy.reshape(-1, 1))
            inputs_embeds = next_embed
        return self.tokenizer.batch_decode(outs, skip_special_tokens=True)

    def generate_stream(
        self,
        audio,
        text_prompt,
        do_sample=False,
        logits_processor=None,
        max_new_tokens=128,
        return_outputs=False,
        init_outputs=None,
    ):
        inputs = self.processor(audio, return_tensors="pt", sampling_rate=16_000)
        input_features = inputs.input_features.to(self.whisper_encoder.device)
        hidden_states = self.whisper_encoder(input_features=input_features)[
            "last_hidden_state"
        ]
        virt_tokens = self.connector(
            hidden_states,
            output_device=self.llm_decoder.model.embed_tokens.weight.device,
        ).squeeze()

        if text_prompt != None and text_prompt != "":
            user_prompt_text = torch.tensor(
                self.tokenizer(text_prompt, add_special_tokens=False)["input_ids"],
                device=self.pre_user_suffix.device,
            )
            prefix = torch.cat(
                [self.pre_user_suffix, user_prompt_text, self.prefix], axis=0
            )
        else:
            prefix = self.prefix
        prefix_embed = self.llm_decoder.model.embed_tokens(prefix)
        suffix = self.final_header
        suffix_embed = self.llm_decoder.model.embed_tokens(suffix)
        inputs_embeds = torch.cat(
            [prefix_embed, virt_tokens, suffix_embed], axis=0
        ).unsqueeze(0)
        outs = []
        outputs = init_outputs
        greedy = 1
        i = 0
        while greedy != 128009 and len(outs) < max_new_tokens:
            past_key_values = outputs.past_key_values if outputs else None
            outputs = self.llm_decoder(
                inputs_embeds=inputs_embeds.to(
                    self.llm_decoder.model.embed_tokens.weight.device
                ).half(),
                return_dict=True,
                output_hidden_states=True,
                past_key_values=past_key_values,
            )
            next_token_logits = outputs.logits[-1, -1, :]

            if logits_processor:
                local_outs = torch.tensor(outs) if outs != [] else suffix
                local_outs = local_outs.reshape(1, -1)
                next_token_logits = logits_processor(
                    local_outs,
                    next_token_logits.reshape(1, -1),
                )
                next_token_logits = next_token_logits.flatten()
            if do_sample:
                logits = next_token_logits / temperature
                probs = F.softmax(logits, dim=-1)
                greedy = torch.multinomial(probs, num_samples=1)[0]
            else:
                greedy = next_token_logits.argmax()
            outs.append(greedy)
            next_embed = self.llm_decoder.model.embed_tokens(greedy.reshape(1, 1))
            inputs_embeds = next_embed
            if not return_outputs:
                yield self.tokenizer.decode(outs, skip_special_tokens=True).replace(
                    "<|eot_id|>", ""
                )
            else:
                yield (self.tokenizer.decode(outs, skip_special_tokens=True).replace(
                    "<|eot_id|>", ""
                ), outputs)
        if not return_outputs:
            return self.tokenizer.decode(outs, skip_special_tokens=True).replace(
                "<|eot_id|>", ""
            )
        else:
            return (self.tokenizer.decode(outs, skip_special_tokens=True).replace(
                "<|eot_id|>", ""
            ), outputs)