Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- word2vec
|
5 |
+
datasets:
|
6 |
+
- wikipedia
|
7 |
+
language:
|
8 |
+
- en
|
9 |
+
---
|
10 |
+
|
11 |
+
## Information
|
12 |
+
Pretrained Word2vec in English. For more information, see [https://wikipedia2vec.github.io/wikipedia2vec/pretrained/](https://wikipedia2vec.github.io/wikipedia2vec/pretrained/).
|
13 |
+
|
14 |
+
## How to use?
|
15 |
+
```
|
16 |
+
from gensim.models import KeyedVectors
|
17 |
+
from huggingface_hub import hf_hub_download
|
18 |
+
model = KeyedVectors.load_word2vec_format(hf_hub_download(repo_id="Word2vec/wikipedia2vec_enwiki_20180420_300d", filename="enwiki_20180420_300d.txt"))
|
19 |
+
model.most_similar("your_word")
|
20 |
+
```
|
21 |
+
|
22 |
+
## Citation
|
23 |
+
```
|
24 |
+
@inproceedings{yamada2020wikipedia2vec,
|
25 |
+
title = "{W}ikipedia2{V}ec: An Efficient Toolkit for Learning and Visualizing the Embeddings of Words and Entities from {W}ikipedia",
|
26 |
+
author={Yamada, Ikuya and Asai, Akari and Sakuma, Jin and Shindo, Hiroyuki and Takeda, Hideaki and Takefuji, Yoshiyasu and Matsumoto, Yuji},
|
27 |
+
booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations},
|
28 |
+
year = {2020},
|
29 |
+
publisher = {Association for Computational Linguistics},
|
30 |
+
pages = {23--30}
|
31 |
+
}
|
32 |
+
```
|