--- base_model: X-Wang/pruned-mt5-small tags: - generated_from_trainer metrics: - bleu model-index: - name: pruned-mt5-small results: [] --- # pruned-mt5-small This model is a fine-tuned version of [X-Wang/pruned-mt5-small](https://huggingface.co/X-Wang/pruned-mt5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4431 - Bleu: 11.4084 - Gen Len: 16.1053 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 24 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 3.3446 | 0.07 | 2000 | 2.9103 | 10.3957 | 16.0567 | | 2.8425 | 0.14 | 4000 | 2.8570 | 10.5695 | 16.1895 | | 3.186 | 0.21 | 6000 | 2.8137 | 10.5958 | 16.1523 | | 2.788 | 0.28 | 8000 | 2.7593 | 10.7553 | 16.0138 | | 2.9075 | 0.35 | 10000 | 2.7266 | 10.9199 | 16.2016 | | 3.0579 | 0.42 | 12000 | 2.7030 | 10.6 | 16.0496 | | 2.3618 | 0.49 | 14000 | 2.6547 | 10.8026 | 16.0412 | | 3.079 | 0.56 | 16000 | 2.6441 | 10.7945 | 16.1148 | | 2.7597 | 0.63 | 18000 | 2.6244 | 10.5877 | 16.0507 | | 2.8533 | 0.7 | 20000 | 2.6049 | 10.9986 | 16.1145 | | 2.843 | 0.77 | 22000 | 2.5836 | 10.9173 | 16.0826 | | 2.8268 | 0.84 | 24000 | 2.5685 | 10.8136 | 16.0516 | | 2.7021 | 0.91 | 26000 | 2.5509 | 11.326 | 16.0554 | | 3.338 | 0.98 | 28000 | 2.5289 | 11.1485 | 16.0333 | | 2.7374 | 1.05 | 30000 | 2.5220 | 11.0166 | 16.0998 | | 2.7996 | 1.12 | 32000 | 2.5077 | 11.1316 | 16.131 | | 2.6897 | 1.19 | 34000 | 2.4994 | 11.0811 | 16.1139 | | 2.4107 | 1.26 | 36000 | 2.4877 | 11.2641 | 16.142 | | 2.7695 | 1.33 | 38000 | 2.4756 | 11.2135 | 16.0977 | | 3.3271 | 1.41 | 40000 | 2.4658 | 11.3328 | 16.0953 | | 2.2641 | 1.48 | 42000 | 2.4612 | 11.3065 | 16.0549 | | 2.6594 | 1.55 | 44000 | 2.4556 | 11.2684 | 16.1371 | | 2.7322 | 1.62 | 46000 | 2.4520 | 11.3739 | 16.1058 | | 2.6824 | 1.69 | 48000 | 2.4462 | 11.3335 | 16.1043 | | 2.3369 | 1.76 | 50000 | 2.4455 | 11.3851 | 16.1239 | | 2.9537 | 1.83 | 52000 | 2.4430 | 11.4026 | 16.0858 | | 2.3928 | 1.9 | 54000 | 2.4433 | 11.301 | 16.1129 | | 2.4714 | 1.97 | 56000 | 2.4431 | 11.4084 | 16.1053 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.0 - Datasets 2.13.1 - Tokenizers 0.13.3