Upload 2 files
Browse files- client2.py +175 -0
- server2.py +13 -0
client2.py
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import warnings
|
3 |
+
from collections import OrderedDict
|
4 |
+
from rouge import Rouge
|
5 |
+
import torch
|
6 |
+
from torch.optim import AdamW
|
7 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
8 |
+
from torch.utils.data import DataLoader
|
9 |
+
from datasets import load_dataset
|
10 |
+
import flwr as fl
|
11 |
+
|
12 |
+
|
13 |
+
from huggingface_hub import notebook_login
|
14 |
+
|
15 |
+
notebook_login()
|
16 |
+
|
17 |
+
|
18 |
+
|
19 |
+
def load_data(node_id):
|
20 |
+
"""Load dataset (training and eval)"""
|
21 |
+
dataset = load_dataset("lighteval/legal_summarization", "BillSum")
|
22 |
+
full_train_dataset = dataset["train"]
|
23 |
+
eval_datasetx = dataset["test"]
|
24 |
+
|
25 |
+
tokenizer = AutoTokenizer.from_pretrained("t5-small")
|
26 |
+
|
27 |
+
# Split the full training dataset into two halves
|
28 |
+
train_dataset_size = len(full_train_dataset)
|
29 |
+
train_dataset_1 = full_train_dataset.select(range(0, train_dataset_size // 100))
|
30 |
+
train_dataset_2 = full_train_dataset.select(range(train_dataset_size // 2, train_dataset_size))
|
31 |
+
|
32 |
+
eval_dataset = eval_datasetx.select(range(0, 100))
|
33 |
+
|
34 |
+
# Choose one half as the training data
|
35 |
+
train_dataset = train_dataset_1
|
36 |
+
|
37 |
+
train_dataset = train_dataset.map(
|
38 |
+
lambda x: tokenizer.prepare_seq2seq_batch(x["article"], x["summary"]),
|
39 |
+
batched=True,
|
40 |
+
)
|
41 |
+
|
42 |
+
eval_dataset = eval_dataset.map(
|
43 |
+
lambda x: tokenizer.prepare_seq2seq_batch(x["article"], x["summary"]),
|
44 |
+
batched=True,
|
45 |
+
)
|
46 |
+
|
47 |
+
trainloader = DataLoader(train_dataset, batch_size=4, collate_fn=lambda data: collate_fn(data, tokenizer))
|
48 |
+
evalloader = DataLoader(eval_dataset, batch_size=4, collate_fn=lambda data: collate_fn(data, tokenizer))
|
49 |
+
|
50 |
+
return trainloader, evalloader, eval_dataset
|
51 |
+
|
52 |
+
|
53 |
+
def collate_fn(data, tokenizer):
|
54 |
+
"""Collate function to convert data into tensors"""
|
55 |
+
# Initialize lists to store tokenized articles and summaries
|
56 |
+
tokenized_articles = []
|
57 |
+
tokenized_summaries = []
|
58 |
+
|
59 |
+
# Iterate over each dictionary in the list
|
60 |
+
for item in data:
|
61 |
+
# Tokenize the article and summary
|
62 |
+
tokenized_item = tokenizer(item["article"], item["summary"], truncation=True, padding=True, return_tensors="pt")
|
63 |
+
|
64 |
+
# Append tokenized article to the list
|
65 |
+
tokenized_articles.append(tokenized_item["input_ids"])
|
66 |
+
|
67 |
+
# Check if "labels" key is present in the tokenized item
|
68 |
+
if "labels" in tokenized_item and "labels" in tokenized_item:
|
69 |
+
# If "labels" key is present, append tokenized summary to the list
|
70 |
+
tokenized_summaries.append(tokenized_item["labels"])
|
71 |
+
else:
|
72 |
+
# If "labels" key is not present, use "input_ids" as a placeholder for the summary
|
73 |
+
# You may need to adjust this logic based on the tokenizer's behavior
|
74 |
+
tokenized_summaries.append(tokenized_item["input_ids"])
|
75 |
+
|
76 |
+
# Convert lists to tensors
|
77 |
+
tokenized_articles = torch.stack(tokenized_articles).squeeze(dim=1) # Remove singleton dimension
|
78 |
+
tokenized_summaries = torch.stack(tokenized_summaries).squeeze(dim=1) # Remove singleton dimension
|
79 |
+
|
80 |
+
return {"input_ids": tokenized_articles, "labels": tokenized_summaries}
|
81 |
+
|
82 |
+
|
83 |
+
def train(net, trainloader, epochs):
|
84 |
+
optimizer = AdamW(net.parameters(), lr=5e-5)
|
85 |
+
net.train()
|
86 |
+
total_batches = len(trainloader)
|
87 |
+
print("Training started...")
|
88 |
+
for i, batch in enumerate(trainloader, start=1):
|
89 |
+
inputs = {k: v.to(torch.device("cuda")) for k, v in batch.items()} # Move all tensors to GPU
|
90 |
+
labels = inputs.pop("labels", None) # Remove labels from inputs
|
91 |
+
outputs = net(**inputs, labels=labels) if labels is not None else net(**inputs)
|
92 |
+
loss = outputs.loss
|
93 |
+
loss.backward()
|
94 |
+
optimizer.step()
|
95 |
+
optimizer.zero_grad()
|
96 |
+
|
97 |
+
# Print progress within the single epoch
|
98 |
+
print(f"\rBatch {i}/{total_batches} - Loss: {loss.item():.4f}", end="", flush=True)
|
99 |
+
print("\nTraining finished.")
|
100 |
+
|
101 |
+
return net.state_dict()
|
102 |
+
|
103 |
+
|
104 |
+
def calculate_rouge(net, eval_dataset, tokenizer):
|
105 |
+
rouge = Rouge()
|
106 |
+
references = [example["summary"] for example in eval_dataset]
|
107 |
+
|
108 |
+
generated_summaries = []
|
109 |
+
for example in eval_dataset:
|
110 |
+
input_ids = tokenizer(example["article"], truncation=True, padding=True, return_tensors="pt")["input_ids"]
|
111 |
+
outputs = net.generate(input_ids.to("cuda"))
|
112 |
+
generated_summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
113 |
+
generated_summaries.append(generated_summary)
|
114 |
+
|
115 |
+
scores = rouge.get_scores(generated_summaries, references)
|
116 |
+
rouge_1 = scores[0]["rouge-1"]["f"]
|
117 |
+
rouge_2 = scores[0]["rouge-2"]["f"]
|
118 |
+
rouge_l = scores[0]["rouge-l"]["f"]
|
119 |
+
|
120 |
+
return rouge_1, rouge_2, rouge_l
|
121 |
+
|
122 |
+
def main(node_id):
|
123 |
+
net = AutoModelForSeq2SeqLM.from_pretrained("t5-small").to("cuda")
|
124 |
+
|
125 |
+
trainloader, _, eval_dataset = load_data(node_id)
|
126 |
+
|
127 |
+
# Flower client
|
128 |
+
class PlaceholderClient(fl.client.NumPyClient):
|
129 |
+
def get_parameters(self, config):
|
130 |
+
return [val.cpu().numpy() for _, val in net.state_dict().items()]
|
131 |
+
|
132 |
+
def set_parameters(self, parameters):
|
133 |
+
params_dict = zip(net.state_dict().keys(), parameters)
|
134 |
+
state_dict = OrderedDict({k: torch.Tensor(v) for k, v in params_dict})
|
135 |
+
net.load_state_dict(state_dict, strict=True)
|
136 |
+
|
137 |
+
def fit(self, parameters, config):
|
138 |
+
self.set_parameters(parameters)
|
139 |
+
print("Training Started...")
|
140 |
+
final_state_dict = train(net, trainloader, epochs=1)
|
141 |
+
print("Training Finished.")
|
142 |
+
return self.get_parameters(config={}), len(trainloader), {}
|
143 |
+
|
144 |
+
def evaluate(self, parameters, config):
|
145 |
+
self.set_parameters(parameters)
|
146 |
+
tokenizer = AutoTokenizer.from_pretrained("t5-small")
|
147 |
+
rouge_1, rouge_2, rouge_l = calculate_rouge(net, eval_dataset, tokenizer)
|
148 |
+
print(f"ROUGE-1 Score: {rouge_1:.4f}")
|
149 |
+
print(f"ROUGE-2 Score: {rouge_2:.4f}")
|
150 |
+
print(f"ROUGE-L Score: {rouge_l:.4f}")
|
151 |
+
# Replace 0.0 with a tuple or list of three elements
|
152 |
+
return 0.0, len(eval_dataset), {
|
153 |
+
"rouge-1": float(rouge_1),
|
154 |
+
"rouge-2": float(rouge_2),
|
155 |
+
"rouge-l": float(rouge_l),
|
156 |
+
}
|
157 |
+
|
158 |
+
# Start client
|
159 |
+
fl.client.start_client(
|
160 |
+
server_address="127.0.0.1:8089", client=PlaceholderClient().to_client()
|
161 |
+
)
|
162 |
+
|
163 |
+
|
164 |
+
if __name__ == "__main__":
|
165 |
+
parser = argparse.ArgumentParser(description="Flower")
|
166 |
+
parser.add_argument(
|
167 |
+
"--node-id",
|
168 |
+
choices=list(range(3)),
|
169 |
+
required=True,
|
170 |
+
type=int,
|
171 |
+
help="Partition of the dataset divided into 1,000 iid partitions created "
|
172 |
+
"artificially.",
|
173 |
+
)
|
174 |
+
node_id = parser.parse_args().node_id
|
175 |
+
main(node_id)
|
server2.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import flwr as fl
|
2 |
+
|
3 |
+
|
4 |
+
strategy = fl.server.strategy.FedAvg(
|
5 |
+
fraction_fit=1.0, fraction_evaluate=1.0,
|
6 |
+
)
|
7 |
+
|
8 |
+
# Start server
|
9 |
+
fl.server.start_server(
|
10 |
+
server_address="0.0.0.0:8089",
|
11 |
+
config=fl.server.ServerConfig(num_rounds=1),
|
12 |
+
strategy=strategy,
|
13 |
+
)
|