|
|
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import logging |
|
import os |
|
|
|
import numpy as np |
|
import torch |
|
import torch._utils |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
BatchNorm2d = nn.BatchNorm2d |
|
|
|
relu_inplace = True |
|
BN_MOMENTUM = 0.1 |
|
ALIGN_CORNERS = True |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def conv3x3(in_planes, out_planes, stride=1): |
|
"""3x3 convolution with padding""" |
|
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, |
|
padding=1, bias=False) |
|
|
|
|
|
from yacs.config import CfgNode as CN |
|
import math |
|
from einops import rearrange |
|
|
|
|
|
HRNET_48 = CN() |
|
HRNET_48.FINAL_CONV_KERNEL = 1 |
|
|
|
HRNET_48.STAGE1 = CN() |
|
HRNET_48.STAGE1.NUM_MODULES = 1 |
|
HRNET_48.STAGE1.NUM_BRANCHES = 1 |
|
HRNET_48.STAGE1.NUM_BLOCKS = [4] |
|
HRNET_48.STAGE1.NUM_CHANNELS = [64] |
|
HRNET_48.STAGE1.BLOCK = 'BOTTLENECK' |
|
HRNET_48.STAGE1.FUSE_METHOD = 'SUM' |
|
|
|
HRNET_48.STAGE2 = CN() |
|
HRNET_48.STAGE2.NUM_MODULES = 1 |
|
HRNET_48.STAGE2.NUM_BRANCHES = 2 |
|
HRNET_48.STAGE2.NUM_BLOCKS = [4, 4] |
|
HRNET_48.STAGE2.NUM_CHANNELS = [48, 96] |
|
HRNET_48.STAGE2.BLOCK = 'BASIC' |
|
HRNET_48.STAGE2.FUSE_METHOD = 'SUM' |
|
|
|
HRNET_48.STAGE3 = CN() |
|
HRNET_48.STAGE3.NUM_MODULES = 4 |
|
HRNET_48.STAGE3.NUM_BRANCHES = 3 |
|
HRNET_48.STAGE3.NUM_BLOCKS = [4, 4, 4] |
|
HRNET_48.STAGE3.NUM_CHANNELS = [48, 96, 192] |
|
HRNET_48.STAGE3.BLOCK = 'BASIC' |
|
HRNET_48.STAGE3.FUSE_METHOD = 'SUM' |
|
|
|
HRNET_48.STAGE4 = CN() |
|
HRNET_48.STAGE4.NUM_MODULES = 3 |
|
HRNET_48.STAGE4.NUM_BRANCHES = 4 |
|
HRNET_48.STAGE4.NUM_BLOCKS = [4, 4, 4, 4] |
|
HRNET_48.STAGE4.NUM_CHANNELS = [48, 96, 192, 384] |
|
HRNET_48.STAGE4.BLOCK = 'BASIC' |
|
HRNET_48.STAGE4.FUSE_METHOD = 'SUM' |
|
|
|
HRNET_32 = CN() |
|
HRNET_32.FINAL_CONV_KERNEL = 1 |
|
|
|
HRNET_32.STAGE1 = CN() |
|
HRNET_32.STAGE1.NUM_MODULES = 1 |
|
HRNET_32.STAGE1.NUM_BRANCHES = 1 |
|
HRNET_32.STAGE1.NUM_BLOCKS = [4] |
|
HRNET_32.STAGE1.NUM_CHANNELS = [64] |
|
HRNET_32.STAGE1.BLOCK = 'BOTTLENECK' |
|
HRNET_32.STAGE1.FUSE_METHOD = 'SUM' |
|
|
|
HRNET_32.STAGE2 = CN() |
|
HRNET_32.STAGE2.NUM_MODULES = 1 |
|
HRNET_32.STAGE2.NUM_BRANCHES = 2 |
|
HRNET_32.STAGE2.NUM_BLOCKS = [4, 4] |
|
HRNET_32.STAGE2.NUM_CHANNELS = [32, 64] |
|
HRNET_32.STAGE2.BLOCK = 'BASIC' |
|
HRNET_32.STAGE2.FUSE_METHOD = 'SUM' |
|
|
|
HRNET_32.STAGE3 = CN() |
|
HRNET_32.STAGE3.NUM_MODULES = 4 |
|
HRNET_32.STAGE3.NUM_BRANCHES = 3 |
|
HRNET_32.STAGE3.NUM_BLOCKS = [4, 4, 4] |
|
HRNET_32.STAGE3.NUM_CHANNELS = [32, 64, 128] |
|
HRNET_32.STAGE3.BLOCK = 'BASIC' |
|
HRNET_32.STAGE3.FUSE_METHOD = 'SUM' |
|
|
|
HRNET_32.STAGE4 = CN() |
|
HRNET_32.STAGE4.NUM_MODULES = 3 |
|
HRNET_32.STAGE4.NUM_BRANCHES = 4 |
|
HRNET_32.STAGE4.NUM_BLOCKS = [4, 4, 4, 4] |
|
HRNET_32.STAGE4.NUM_CHANNELS = [32, 64, 128, 256] |
|
HRNET_32.STAGE4.BLOCK = 'BASIC' |
|
HRNET_32.STAGE4.FUSE_METHOD = 'SUM' |
|
|
|
HRNET_18 = CN() |
|
HRNET_18.FINAL_CONV_KERNEL = 1 |
|
|
|
HRNET_18.STAGE1 = CN() |
|
HRNET_18.STAGE1.NUM_MODULES = 1 |
|
HRNET_18.STAGE1.NUM_BRANCHES = 1 |
|
HRNET_18.STAGE1.NUM_BLOCKS = [4] |
|
HRNET_18.STAGE1.NUM_CHANNELS = [64] |
|
HRNET_18.STAGE1.BLOCK = 'BOTTLENECK' |
|
HRNET_18.STAGE1.FUSE_METHOD = 'SUM' |
|
|
|
HRNET_18.STAGE2 = CN() |
|
HRNET_18.STAGE2.NUM_MODULES = 1 |
|
HRNET_18.STAGE2.NUM_BRANCHES = 2 |
|
HRNET_18.STAGE2.NUM_BLOCKS = [4, 4] |
|
HRNET_18.STAGE2.NUM_CHANNELS = [18, 36] |
|
HRNET_18.STAGE2.BLOCK = 'BASIC' |
|
HRNET_18.STAGE2.FUSE_METHOD = 'SUM' |
|
|
|
HRNET_18.STAGE3 = CN() |
|
HRNET_18.STAGE3.NUM_MODULES = 4 |
|
HRNET_18.STAGE3.NUM_BRANCHES = 3 |
|
HRNET_18.STAGE3.NUM_BLOCKS = [4, 4, 4] |
|
HRNET_18.STAGE3.NUM_CHANNELS = [18, 36, 72] |
|
HRNET_18.STAGE3.BLOCK = 'BASIC' |
|
HRNET_18.STAGE3.FUSE_METHOD = 'SUM' |
|
|
|
HRNET_18.STAGE4 = CN() |
|
HRNET_18.STAGE4.NUM_MODULES = 3 |
|
HRNET_18.STAGE4.NUM_BRANCHES = 4 |
|
HRNET_18.STAGE4.NUM_BLOCKS = [4, 4, 4, 4] |
|
HRNET_18.STAGE4.NUM_CHANNELS = [18, 36, 72, 144] |
|
HRNET_18.STAGE4.BLOCK = 'BASIC' |
|
HRNET_18.STAGE4.FUSE_METHOD = 'SUM' |
|
|
|
|
|
class PPM(nn.Module): |
|
def __init__(self, in_dim, reduction_dim, bins): |
|
super(PPM, self).__init__() |
|
self.features = [] |
|
for bin in bins: |
|
self.features.append(nn.Sequential( |
|
nn.AdaptiveAvgPool2d(bin), |
|
nn.Conv2d(in_dim, reduction_dim, kernel_size=1, bias=False), |
|
nn.BatchNorm2d(reduction_dim), |
|
nn.ReLU(inplace=True) |
|
)) |
|
self.features = nn.ModuleList(self.features) |
|
|
|
def forward(self, x): |
|
x_size = x.size() |
|
out = [x] |
|
for f in self.features: |
|
out.append(F.interpolate(f(x), x_size[2:], mode='bilinear', align_corners=True)) |
|
return torch.cat(out, 1) |
|
|
|
|
|
class BasicBlock(nn.Module): |
|
expansion = 1 |
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None): |
|
super(BasicBlock, self).__init__() |
|
self.conv1 = conv3x3(inplanes, planes, stride) |
|
self.bn1 = BatchNorm2d(planes, momentum=BN_MOMENTUM) |
|
self.relu = nn.ReLU(inplace=relu_inplace) |
|
self.conv2 = conv3x3(planes, planes) |
|
self.bn2 = BatchNorm2d(planes, momentum=BN_MOMENTUM) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
residual = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
|
|
if self.downsample is not None: |
|
residual = self.downsample(x) |
|
out = out + residual |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class Bottleneck(nn.Module): |
|
expansion = 4 |
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None): |
|
super(Bottleneck, self).__init__() |
|
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) |
|
self.bn1 = BatchNorm2d(planes, momentum=BN_MOMENTUM) |
|
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, |
|
padding=1, bias=False) |
|
self.bn2 = BatchNorm2d(planes, momentum=BN_MOMENTUM) |
|
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, |
|
bias=False) |
|
self.bn3 = BatchNorm2d(planes * self.expansion, |
|
momentum=BN_MOMENTUM) |
|
self.relu = nn.ReLU(inplace=relu_inplace) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
residual = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv3(out) |
|
out = self.bn3(out) |
|
|
|
if self.downsample is not None: |
|
residual = self.downsample(x) |
|
|
|
out = out + residual |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class HighResolutionModule(nn.Module): |
|
def __init__(self, num_branches, blocks, num_blocks, num_inchannels, |
|
num_channels, fuse_method, multi_scale_output=True): |
|
super(HighResolutionModule, self).__init__() |
|
self._check_branches( |
|
num_branches, blocks, num_blocks, num_inchannels, num_channels) |
|
|
|
self.num_inchannels = num_inchannels |
|
self.fuse_method = fuse_method |
|
self.num_branches = num_branches |
|
|
|
self.multi_scale_output = multi_scale_output |
|
|
|
self.branches = self._make_branches( |
|
num_branches, blocks, num_blocks, num_channels) |
|
self.fuse_layers = self._make_fuse_layers() |
|
self.relu = nn.ReLU(inplace=relu_inplace) |
|
|
|
def _check_branches(self, num_branches, blocks, num_blocks, |
|
num_inchannels, num_channels): |
|
if num_branches != len(num_blocks): |
|
error_msg = 'NUM_BRANCHES({}) <> NUM_BLOCKS({})'.format( |
|
num_branches, len(num_blocks)) |
|
logger.error(error_msg) |
|
raise ValueError(error_msg) |
|
|
|
if num_branches != len(num_channels): |
|
error_msg = 'NUM_BRANCHES({}) <> NUM_CHANNELS({})'.format( |
|
num_branches, len(num_channels)) |
|
logger.error(error_msg) |
|
raise ValueError(error_msg) |
|
|
|
if num_branches != len(num_inchannels): |
|
error_msg = 'NUM_BRANCHES({}) <> NUM_INCHANNELS({})'.format( |
|
num_branches, len(num_inchannels)) |
|
logger.error(error_msg) |
|
raise ValueError(error_msg) |
|
|
|
def _make_one_branch(self, branch_index, block, num_blocks, num_channels, |
|
stride=1): |
|
downsample = None |
|
if stride != 1 or \ |
|
self.num_inchannels[branch_index] != num_channels[branch_index] * block.expansion: |
|
downsample = nn.Sequential( |
|
nn.Conv2d(self.num_inchannels[branch_index], |
|
num_channels[branch_index] * block.expansion, |
|
kernel_size=1, stride=stride, bias=False), |
|
BatchNorm2d(num_channels[branch_index] * block.expansion, |
|
momentum=BN_MOMENTUM), |
|
) |
|
|
|
layers = [] |
|
layers.append(block(self.num_inchannels[branch_index], |
|
num_channels[branch_index], stride, downsample)) |
|
self.num_inchannels[branch_index] = \ |
|
num_channels[branch_index] * block.expansion |
|
for i in range(1, num_blocks[branch_index]): |
|
layers.append(block(self.num_inchannels[branch_index], |
|
num_channels[branch_index])) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
|
|
def _make_branches(self, num_branches, block, num_blocks, num_channels): |
|
branches = [] |
|
|
|
for i in range(num_branches): |
|
branches.append( |
|
self._make_one_branch(i, block, num_blocks, num_channels)) |
|
|
|
return nn.ModuleList(branches) |
|
|
|
def _make_fuse_layers(self): |
|
if self.num_branches == 1: |
|
return None |
|
num_branches = self.num_branches |
|
num_inchannels = self.num_inchannels |
|
fuse_layers = [] |
|
for i in range(num_branches if self.multi_scale_output else 1): |
|
fuse_layer = [] |
|
for j in range(num_branches): |
|
if j > i: |
|
fuse_layer.append(nn.Sequential( |
|
nn.Conv2d(num_inchannels[j], |
|
num_inchannels[i], |
|
1, |
|
1, |
|
0, |
|
bias=False), |
|
BatchNorm2d(num_inchannels[i], momentum=BN_MOMENTUM))) |
|
elif j == i: |
|
fuse_layer.append(None) |
|
else: |
|
conv3x3s = [] |
|
for k in range(i - j): |
|
if k == i - j - 1: |
|
num_outchannels_conv3x3 = num_inchannels[i] |
|
conv3x3s.append(nn.Sequential( |
|
nn.Conv2d(num_inchannels[j], |
|
num_outchannels_conv3x3, |
|
3, 2, 1, bias=False), |
|
BatchNorm2d(num_outchannels_conv3x3, |
|
momentum=BN_MOMENTUM))) |
|
else: |
|
num_outchannels_conv3x3 = num_inchannels[j] |
|
conv3x3s.append(nn.Sequential( |
|
nn.Conv2d(num_inchannels[j], |
|
num_outchannels_conv3x3, |
|
3, 2, 1, bias=False), |
|
BatchNorm2d(num_outchannels_conv3x3, |
|
momentum=BN_MOMENTUM), |
|
nn.ReLU(inplace=relu_inplace))) |
|
fuse_layer.append(nn.Sequential(*conv3x3s)) |
|
fuse_layers.append(nn.ModuleList(fuse_layer)) |
|
|
|
return nn.ModuleList(fuse_layers) |
|
|
|
def get_num_inchannels(self): |
|
return self.num_inchannels |
|
|
|
def forward(self, x): |
|
if self.num_branches == 1: |
|
return [self.branches[0](x[0])] |
|
|
|
for i in range(self.num_branches): |
|
x[i] = self.branches[i](x[i]) |
|
|
|
x_fuse = [] |
|
for i in range(len(self.fuse_layers)): |
|
y = x[0] if i == 0 else self.fuse_layers[i][0](x[0]) |
|
for j in range(1, self.num_branches): |
|
if i == j: |
|
y = y + x[j] |
|
elif j > i: |
|
width_output = x[i].shape[-1] |
|
height_output = x[i].shape[-2] |
|
y = y + F.interpolate( |
|
self.fuse_layers[i][j](x[j]), |
|
size=[height_output, width_output], |
|
mode='bilinear', align_corners=ALIGN_CORNERS) |
|
else: |
|
y = y + self.fuse_layers[i][j](x[j]) |
|
x_fuse.append(self.relu(y)) |
|
|
|
return x_fuse |
|
|
|
|
|
blocks_dict = { |
|
'BASIC': BasicBlock, |
|
'BOTTLENECK': Bottleneck |
|
} |
|
|
|
|
|
class HRCloudNet(nn.Module): |
|
|
|
def __init__(self, in_channels=3,num_classes=2, base_c=48, **kwargs): |
|
global ALIGN_CORNERS |
|
extra = HRNET_48 |
|
super(HRCloudNet, self).__init__() |
|
ALIGN_CORNERS = True |
|
|
|
self.num_classes = num_classes |
|
|
|
self.conv1 = nn.Conv2d(in_channels, 64, kernel_size=3, stride=2, padding=1, |
|
bias=False) |
|
self.bn1 = BatchNorm2d(64, momentum=BN_MOMENTUM) |
|
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1, |
|
bias=False) |
|
self.bn2 = BatchNorm2d(64, momentum=BN_MOMENTUM) |
|
self.relu = nn.ReLU(inplace=relu_inplace) |
|
|
|
self.stage1_cfg = extra['STAGE1'] |
|
num_channels = self.stage1_cfg['NUM_CHANNELS'][0] |
|
block = blocks_dict[self.stage1_cfg['BLOCK']] |
|
num_blocks = self.stage1_cfg['NUM_BLOCKS'][0] |
|
self.layer1 = self._make_layer(block, 64, num_channels, num_blocks) |
|
stage1_out_channel = block.expansion * num_channels |
|
|
|
self.stage2_cfg = extra['STAGE2'] |
|
num_channels = self.stage2_cfg['NUM_CHANNELS'] |
|
block = blocks_dict[self.stage2_cfg['BLOCK']] |
|
num_channels = [ |
|
num_channels[i] * block.expansion for i in range(len(num_channels))] |
|
self.transition1 = self._make_transition_layer( |
|
[stage1_out_channel], num_channels) |
|
self.stage2, pre_stage_channels = self._make_stage( |
|
self.stage2_cfg, num_channels) |
|
|
|
self.stage3_cfg = extra['STAGE3'] |
|
num_channels = self.stage3_cfg['NUM_CHANNELS'] |
|
block = blocks_dict[self.stage3_cfg['BLOCK']] |
|
num_channels = [ |
|
num_channels[i] * block.expansion for i in range(len(num_channels))] |
|
self.transition2 = self._make_transition_layer( |
|
pre_stage_channels, num_channels) |
|
self.stage3, pre_stage_channels = self._make_stage( |
|
self.stage3_cfg, num_channels) |
|
|
|
self.stage4_cfg = extra['STAGE4'] |
|
num_channels = self.stage4_cfg['NUM_CHANNELS'] |
|
block = blocks_dict[self.stage4_cfg['BLOCK']] |
|
num_channels = [ |
|
num_channels[i] * block.expansion for i in range(len(num_channels))] |
|
self.transition3 = self._make_transition_layer( |
|
pre_stage_channels, num_channels) |
|
self.stage4, pre_stage_channels = self._make_stage( |
|
self.stage4_cfg, num_channels, multi_scale_output=True) |
|
self.out_conv = OutConv(base_c, num_classes) |
|
last_inp_channels = int(np.sum(pre_stage_channels)) |
|
|
|
self.corr = Corr(nclass=2) |
|
self.proj = nn.Sequential( |
|
|
|
nn.Conv2d(720, 48, kernel_size=3, stride=1, padding=1, bias=True), |
|
nn.BatchNorm2d(48), |
|
nn.ReLU(inplace=True), |
|
nn.Dropout2d(0.1), |
|
) |
|
|
|
self.up2 = Up(base_c * 8, base_c * 4, True) |
|
self.up3 = Up(base_c * 4, base_c * 2, True) |
|
self.up4 = Up(base_c * 2, base_c, True) |
|
fea_dim = 720 |
|
bins = (1, 2, 3, 6) |
|
self.ppm = PPM(fea_dim, int(fea_dim / len(bins)), bins) |
|
fea_dim *= 2 |
|
self.cls = nn.Sequential( |
|
nn.Conv2d(fea_dim, 512, kernel_size=3, padding=1, bias=False), |
|
nn.BatchNorm2d(512), |
|
nn.ReLU(inplace=True), |
|
nn.Dropout2d(p=0.1), |
|
nn.Conv2d(512, num_classes, kernel_size=1) |
|
) |
|
|
|
''' |
|
转换层的作用有两种情况: |
|
|
|
当前分支数小于之前分支数时,仅对前几个分支进行通道数调整。 |
|
当前分支数大于之前分支数时,新建一些转换层,对多余的分支进行下采样,改变通道数以适应后续的连接。 |
|
最终,这些转换层会被组合成一个 nn.ModuleList 对象,并在网络的构建过程中使用。 |
|
这有助于确保每个分支的通道数在不同阶段之间能够正确匹配,以便进行特征的融合和连接 |
|
''' |
|
|
|
def _make_transition_layer( |
|
self, num_channels_pre_layer, num_channels_cur_layer): |
|
|
|
num_branches_cur = len(num_channels_cur_layer) |
|
|
|
num_branches_pre = len(num_channels_pre_layer) |
|
|
|
transition_layers = [] |
|
for i in range(num_branches_cur): |
|
|
|
if i < num_branches_pre: |
|
|
|
if num_channels_cur_layer[i] != num_channels_pre_layer[i]: |
|
transition_layers.append(nn.Sequential( |
|
|
|
nn.Conv2d(num_channels_pre_layer[i], |
|
num_channels_cur_layer[i], |
|
3, |
|
1, |
|
1, |
|
bias=False), |
|
BatchNorm2d( |
|
num_channels_cur_layer[i], momentum=BN_MOMENTUM), |
|
nn.ReLU(inplace=relu_inplace))) |
|
else: |
|
transition_layers.append(None) |
|
else: |
|
conv3x3s = [] |
|
for j in range(i + 1 - num_branches_pre): |
|
inchannels = num_channels_pre_layer[-1] |
|
outchannels = num_channels_cur_layer[i] \ |
|
if j == i - num_branches_pre else inchannels |
|
conv3x3s.append(nn.Sequential( |
|
nn.Conv2d( |
|
inchannels, outchannels, 3, 2, 1, bias=False), |
|
BatchNorm2d(outchannels, momentum=BN_MOMENTUM), |
|
nn.ReLU(inplace=relu_inplace))) |
|
transition_layers.append(nn.Sequential(*conv3x3s)) |
|
|
|
return nn.ModuleList(transition_layers) |
|
|
|
''' |
|
_make_layer 函数的主要作用是创建一个由多个相同类型的残差块(Residual Block)组成的层。 |
|
''' |
|
|
|
def _make_layer(self, block, inplanes, planes, blocks, stride=1): |
|
downsample = None |
|
if stride != 1 or inplanes != planes * block.expansion: |
|
downsample = nn.Sequential( |
|
nn.Conv2d(inplanes, planes * block.expansion, |
|
kernel_size=1, stride=stride, bias=False), |
|
BatchNorm2d(planes * block.expansion, momentum=BN_MOMENTUM), |
|
) |
|
|
|
layers = [] |
|
layers.append(block(inplanes, planes, stride, downsample)) |
|
inplanes = planes * block.expansion |
|
for i in range(1, blocks): |
|
layers.append(block(inplanes, planes)) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
|
|
def _make_stage(self, layer_config, num_inchannels, |
|
multi_scale_output=True): |
|
num_modules = layer_config['NUM_MODULES'] |
|
num_branches = layer_config['NUM_BRANCHES'] |
|
num_blocks = layer_config['NUM_BLOCKS'] |
|
num_channels = layer_config['NUM_CHANNELS'] |
|
block = blocks_dict[layer_config['BLOCK']] |
|
fuse_method = layer_config['FUSE_METHOD'] |
|
|
|
modules = [] |
|
for i in range(num_modules): |
|
|
|
if not multi_scale_output and i == num_modules - 1: |
|
reset_multi_scale_output = False |
|
else: |
|
reset_multi_scale_output = True |
|
modules.append( |
|
HighResolutionModule(num_branches, |
|
block, |
|
num_blocks, |
|
num_inchannels, |
|
num_channels, |
|
fuse_method, |
|
reset_multi_scale_output) |
|
) |
|
num_inchannels = modules[-1].get_num_inchannels() |
|
|
|
return nn.Sequential(*modules), num_inchannels |
|
|
|
def forward(self, input, need_fp=True, use_corr=True): |
|
|
|
|
|
x = self.conv1(input) |
|
x = self.bn1(x) |
|
x = self.relu(x) |
|
|
|
x = self.conv2(x) |
|
x = self.bn2(x) |
|
x = self.relu(x) |
|
x = self.layer1(x) |
|
|
|
x_list = [] |
|
for i in range(self.stage2_cfg['NUM_BRANCHES']): |
|
if self.transition1[i] is not None: |
|
x_list.append(self.transition1[i](x)) |
|
else: |
|
x_list.append(x) |
|
y_list = self.stage2(x_list) |
|
|
|
x_list = [] |
|
for i in range(self.stage3_cfg['NUM_BRANCHES']): |
|
if self.transition2[i] is not None: |
|
if i < self.stage2_cfg['NUM_BRANCHES']: |
|
x_list.append(self.transition2[i](y_list[i])) |
|
else: |
|
x_list.append(self.transition2[i](y_list[-1])) |
|
else: |
|
x_list.append(y_list[i]) |
|
y_list = self.stage3(x_list) |
|
|
|
x_list = [] |
|
for i in range(self.stage4_cfg['NUM_BRANCHES']): |
|
if self.transition3[i] is not None: |
|
if i < self.stage3_cfg['NUM_BRANCHES']: |
|
x_list.append(self.transition3[i](y_list[i])) |
|
else: |
|
x_list.append(self.transition3[i](y_list[-1])) |
|
else: |
|
x_list.append(y_list[i]) |
|
x = self.stage4(x_list) |
|
dict_return = {} |
|
|
|
x0_h, x0_w = x[0].size(2), x[0].size(3) |
|
|
|
x3 = F.interpolate(x[3], size=(x0_h, x0_w), mode='bilinear', align_corners=ALIGN_CORNERS) |
|
|
|
x[2] = self.up2(x[3], x[2]) |
|
x2 = F.interpolate(x[2], size=(x0_h, x0_w), mode='bilinear', align_corners=ALIGN_CORNERS) |
|
|
|
x[1] = self.up3(x[2], x[1]) |
|
x1 = F.interpolate(x[1], size=(x0_h, x0_w), mode='bilinear', align_corners=ALIGN_CORNERS) |
|
x[0] = self.up4(x[1], x[0]) |
|
xk = torch.cat([x[0], x1, x2, x3], 1) |
|
|
|
feat = self.ppm(xk) |
|
x = self.cls(feat) |
|
|
|
if need_fp: |
|
logits = F.interpolate(x, size=input.size()[2:], mode='bilinear', align_corners=True) |
|
|
|
out = logits |
|
out_fp = logits |
|
if use_corr: |
|
proj_feats = self.proj(xk) |
|
corr_out = self.corr(proj_feats, out) |
|
corr_out = F.interpolate(corr_out, size=(352, 352), mode="bilinear", align_corners=True) |
|
dict_return['corr_out'] = corr_out |
|
dict_return['out'] = out |
|
dict_return['out_fp'] = out_fp |
|
|
|
return dict_return['out'] |
|
|
|
out = F.interpolate(x, size=input.size()[2:], mode='bilinear', align_corners=True) |
|
if use_corr: |
|
proj_feats = self.proj(xk) |
|
|
|
corr_out = self.corr(proj_feats, out) |
|
corr_out = F.interpolate(corr_out, size=(352, 352), mode="bilinear", align_corners=True) |
|
dict_return['corr_out'] = corr_out |
|
dict_return['out'] = out |
|
return dict_return['out'] |
|
|
|
|
|
def init_weights(self, pretrained='', ): |
|
logger.info('=> init weights from normal distribution') |
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.normal_(m.weight, std=0.001) |
|
elif isinstance(m, nn.BatchNorm2d): |
|
nn.init.constant_(m.weight, 1) |
|
nn.init.constant_(m.bias, 0) |
|
if os.path.isfile(pretrained): |
|
pretrained_dict = torch.load(pretrained) |
|
logger.info('=> loading pretrained model {}'.format(pretrained)) |
|
model_dict = self.state_dict() |
|
pretrained_dict = {k: v for k, v in pretrained_dict.items() |
|
if k in model_dict.keys()} |
|
for k, _ in pretrained_dict.items(): |
|
logger.info( |
|
'=> loading {} pretrained model {}'.format(k, pretrained)) |
|
model_dict.update(pretrained_dict) |
|
self.load_state_dict(model_dict) |
|
|
|
|
|
class OutConv(nn.Sequential): |
|
def __init__(self, in_channels, num_classes): |
|
super(OutConv, self).__init__( |
|
nn.Conv2d(720, num_classes, kernel_size=1) |
|
) |
|
|
|
|
|
class DoubleConv(nn.Sequential): |
|
def __init__(self, in_channels, out_channels, mid_channels=None): |
|
if mid_channels is None: |
|
mid_channels = out_channels |
|
super(DoubleConv, self).__init__( |
|
nn.Conv2d(in_channels + out_channels, mid_channels, kernel_size=3, padding=1, bias=False), |
|
nn.BatchNorm2d(mid_channels), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1, bias=False), |
|
nn.BatchNorm2d(out_channels), |
|
nn.ReLU(inplace=True) |
|
) |
|
|
|
|
|
class Up(nn.Module): |
|
def __init__(self, in_channels, out_channels, bilinear=True): |
|
super(Up, self).__init__() |
|
if bilinear: |
|
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) |
|
self.conv = DoubleConv(in_channels, out_channels, in_channels // 2) |
|
else: |
|
self.up = nn.ConvTranspose2d(in_channels, in_channels // 2, kernel_size=2, stride=2) |
|
self.conv = DoubleConv(in_channels, out_channels) |
|
|
|
def forward(self, x1: torch.Tensor, x2: torch.Tensor) -> torch.Tensor: |
|
x1 = self.up(x1) |
|
|
|
diff_y = x2.size()[2] - x1.size()[2] |
|
diff_x = x2.size()[3] - x1.size()[3] |
|
|
|
|
|
x1 = F.pad(x1, [diff_x // 2, diff_x - diff_x // 2, |
|
diff_y // 2, diff_y - diff_y // 2]) |
|
|
|
x = torch.cat([x2, x1], dim=1) |
|
x = self.conv(x) |
|
return x |
|
|
|
|
|
class Corr(nn.Module): |
|
def __init__(self, nclass=2): |
|
super(Corr, self).__init__() |
|
self.nclass = nclass |
|
self.conv1 = nn.Conv2d(48, self.nclass, kernel_size=1, stride=1, padding=0, bias=True) |
|
self.conv2 = nn.Conv2d(48, self.nclass, kernel_size=1, stride=1, padding=0, bias=True) |
|
|
|
def forward(self, feature_in, out): |
|
|
|
|
|
h_in, w_in = math.ceil(feature_in.shape[2] / (1)), math.ceil(feature_in.shape[3] / (1)) |
|
out = F.interpolate(out.detach(), (h_in, w_in), mode='bilinear', align_corners=True) |
|
feature = F.interpolate(feature_in, (h_in, w_in), mode='bilinear', align_corners=True) |
|
f1 = rearrange(self.conv1(feature), 'n c h w -> n c (h w)') |
|
f2 = rearrange(self.conv2(feature), 'n c h w -> n c (h w)') |
|
out_temp = rearrange(out, 'n c h w -> n c (h w)') |
|
corr_map = torch.matmul(f1.transpose(1, 2), f2) / torch.sqrt(torch.tensor(f1.shape[1]).float()) |
|
corr_map = F.softmax(corr_map, dim=-1) |
|
|
|
|
|
out = rearrange(torch.matmul(out_temp, corr_map), 'n c (h w) -> n c h w', h=h_in, w=w_in) |
|
|
|
return out |
|
|
|
|
|
if __name__ == '__main__': |
|
input = torch.randn(4, 3, 352, 352) |
|
cloud = HRCloudNet(num_classes=2) |
|
output = cloud(input) |
|
print(output.shape) |
|
|