# -*- coding: utf-8 -*- # @Time : 2024/8/7 下午3:51 # @Author : xiaoshun # @Email : 3038523973@qq.com # @File : kappamask.py.py # @Software: PyCharm import torch from torch import nn as nn from torch.nn import functional as F class KappaMask(nn.Module): def __init__(self, num_classes=2, in_channels=3): super().__init__() self.conv1 = nn.Sequential( nn.Conv2d(in_channels, 64, 3, 1, 1), nn.ReLU(inplace=True), nn.Conv2d(64, 64, 3, 1, 1), nn.ReLU(inplace=True), ) self.conv2 = nn.Sequential( nn.Conv2d(64, 128, 3, 1, 1), nn.ReLU(inplace=True), nn.Conv2d(128, 128, 3, 1, 1), nn.ReLU(inplace=True), ) self.conv3 = nn.Sequential( nn.Conv2d(128, 256, 3, 1, 1), nn.ReLU(inplace=True), nn.Conv2d(256, 256, 3, 1, 1), nn.ReLU(inplace=True), ) self.conv4 = nn.Sequential( nn.Conv2d(256, 512, 3, 1, 1), nn.ReLU(inplace=True), nn.Conv2d(512, 512, 3, 1, 1), nn.ReLU(inplace=True), ) self.drop4 = nn.Dropout(0.5) self.conv5 = nn.Sequential( nn.Conv2d(512, 1024, 3, 1, 1), nn.ReLU(inplace=True), nn.Conv2d(1024, 1024, 3, 1, 1), nn.ReLU(inplace=True), ) self.drop5 = nn.Dropout(0.5) self.up6 = nn.Sequential( nn.Upsample(scale_factor=2), nn.ZeroPad2d((0, 1, 0, 1)), nn.Conv2d(1024, 512, 2), nn.ReLU(inplace=True) ) self.conv6 = nn.Sequential( nn.Conv2d(1024, 512, 3, 1, 1), nn.ReLU(inplace=True), nn.Conv2d(512, 512, 3, 1, 1), nn.ReLU(inplace=True), ) self.up7 = nn.Sequential( nn.Upsample(scale_factor=2), nn.ZeroPad2d((0, 1, 0, 1)), nn.Conv2d(512, 256, 2), nn.ReLU(inplace=True) ) self.conv7 = nn.Sequential( nn.Conv2d(512, 256, 3, 1, 1), nn.ReLU(inplace=True), nn.Conv2d(256, 256, 3, 1, 1), nn.ReLU(inplace=True), ) self.up8 = nn.Sequential( nn.Upsample(scale_factor=2), nn.ZeroPad2d((0, 1, 0, 1)), nn.Conv2d(256, 128, 2), nn.ReLU(inplace=True) ) self.conv8 = nn.Sequential( nn.Conv2d(256, 128, 3, 1, 1), nn.ReLU(inplace=True), nn.Conv2d(128, 128, 3, 1, 1), nn.ReLU(inplace=True), ) self.up9 = nn.Sequential( nn.Upsample(scale_factor=2), nn.ZeroPad2d((0, 1, 0, 1)), nn.Conv2d(128, 64, 2), nn.ReLU(inplace=True) ) self.conv9 = nn.Sequential( nn.Conv2d(128, 64, 3, 1, 1), nn.ReLU(inplace=True), nn.Conv2d(64, 64, 3, 1, 1), nn.ReLU(inplace=True), nn.Conv2d(64, 2, 3, 1, 1), nn.ReLU(inplace=True), ) self.conv10 = nn.Conv2d(2, num_classes, 1) self.__init_weights() def __init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') def forward(self, x): conv1 = self.conv1(x) pool1 = F.max_pool2d(conv1, 2, 2) conv2 = self.conv2(pool1) pool2 = F.max_pool2d(conv2, 2, 2) conv3 = self.conv3(pool2) pool3 = F.max_pool2d(conv3, 2, 2) conv4 = self.conv4(pool3) drop4 = self.drop4(conv4) pool4 = F.max_pool2d(drop4, 2, 2) conv5 = self.conv5(pool4) drop5 = self.drop5(conv5) up6 = self.up6(drop5) merge6 = torch.cat((drop4, up6), dim=1) conv6 = self.conv6(merge6) up7 = self.up7(conv6) merge7 = torch.cat((conv3, up7), dim=1) conv7 = self.conv7(merge7) up8 = self.up8(conv7) merge8 = torch.cat((conv2, up8), dim=1) conv8 = self.conv8(merge8) up9 = self.up9(conv8) merge9 = torch.cat((conv1, up9), dim=1) conv9 = self.conv9(merge9) output = self.conv10(conv9) return output if __name__ == '__main__': model = KappaMask(num_classes=2, in_channels=3) fake_data = torch.rand(2, 3, 256, 256) output = model(fake_data) print(output.shape)