--- language: - en license: apache-2.0 tags: - mistral - Eclipse-13B-dpo pipeline_tag: text-generation model-index: - name: Eclipse-13B-dpo results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 64.59 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Xenon1/Eclipse-13B-dpo name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 85.0 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Xenon1/Eclipse-13B-dpo name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.85 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Xenon1/Eclipse-13B-dpo name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 54.76 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Xenon1/Eclipse-13B-dpo name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 84.61 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Xenon1/Eclipse-13B-dpo name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 69.37 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Xenon1/Eclipse-13B-dpo name: Open LLM Leaderboard --- # Model Card for Eclipse-13B-dpo Mistral-7B-v0.1 model fine-tuned on the Ultrafeedback dataset using techinques shown in the paper [Self-Rewarding Language Models](https://arxiv.org/abs/2401.10020). ## Instruction format In order to leverage instruction fine-tuning, your prompt should be surrounded by `[INST]` and `[/INST]` tokens. The very first instruction should begin with a begin of sentence id. The next instructions should not. The assistant generation will be ended by the end-of-sentence token id. E.g. ``` text = "[INST] What is your favourite condiment? [/INST]" "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen! " "[INST] Do you have mayonnaise recipes? [/INST]" ``` This format is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating) via the `apply_chat_template()` method: ```python from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained("Xenon1/Eclipse-13B-dpo") tokenizer = AutoTokenizer.from_pretrained("Xenon1/Eclipse-13B-dpo") messages = [ {"role": "user", "content": "What is your favourite condiment?"}, {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"}, {"role": "user", "content": "Do you have mayonnaise recipes?"} ] encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt") model_inputs = encodeds.to(device) model.to(device) generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True) decoded = tokenizer.batch_decode(generated_ids) print(decoded[0]) ``` ## Model Architecture This instruction model is based on Mistral-7B-v0.1, a transformer model with the following architecture choices: - Grouped-Query Attention - Sliding-Window Attention - Byte-fallback BPE tokenizer # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Xenon1__Eclipse-13B-dpo) | Metric |Value| |---------------------------------|----:| |Avg. |70.53| |AI2 Reasoning Challenge (25-Shot)|64.59| |HellaSwag (10-Shot) |85.00| |MMLU (5-Shot) |64.85| |TruthfulQA (0-shot) |54.76| |Winogrande (5-shot) |84.61| |GSM8k (5-shot) |69.37|