Xenova HF staff commited on
Commit
d89e2d2
1 Parent(s): bc484d7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +29 -0
README.md CHANGED
@@ -4,4 +4,33 @@ library_name: transformers.js
4
 
5
  https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593 with ONNX weights to be compatible with Transformers.js.
6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
 
4
 
5
  https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593 with ONNX weights to be compatible with Transformers.js.
6
 
7
+
8
+ ## Usage (Transformers.js)
9
+
10
+ If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using:
11
+ ```bash
12
+ npm i @xenova/transformers
13
+ ```
14
+
15
+ **Example:** Perform audio classification with `Xenova/ast-finetuned-audioset-10-10-0.4593` and return top 4 results.
16
+ ```js
17
+ import { pipeline } from '@xenova/transformers'
18
+
19
+ // Create an audio classification pipeline
20
+ const classifier = await pipeline('audio-classification', 'Xenova/ast-finetuned-audioset-10-10-0.4593');
21
+
22
+ // Predict class
23
+ const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/cat_meow.wav';
24
+ const output = await classifier(url, { topk: 4 });
25
+ console.log(output);
26
+ // [
27
+ // { label: 'Meow', score: 0.5617874264717102 },
28
+ // { label: 'Cat', score: 0.22365376353263855 },
29
+ // { label: 'Domestic animals, pets', score: 0.1141069084405899 },
30
+ // { label: 'Animal', score: 0.08985692262649536 },
31
+ // ]
32
+ ```
33
+
34
+ ---
35
+
36
  Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).