--- base_model: MIT/ast-finetuned-audioset-10-10-0.4593 library_name: transformers.js --- https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593 with ONNX weights to be compatible with Transformers.js. ## Usage (Transformers.js) If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using: ```bash npm i @xenova/transformers ``` **Example:** Perform audio classification with `Xenova/ast-finetuned-audioset-10-10-0.4593` and return top 4 results. ```js import { pipeline } from '@xenova/transformers'; // Create an audio classification pipeline const classifier = await pipeline('audio-classification', 'Xenova/ast-finetuned-audioset-10-10-0.4593'); // Predict class const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/cat_meow.wav'; const output = await classifier(url, { topk: 4 }); console.log(output); // [ // { label: 'Meow', score: 0.5617874264717102 }, // { label: 'Cat', score: 0.22365376353263855 }, // { label: 'Domestic animals, pets', score: 0.1141069084405899 }, // { label: 'Animal', score: 0.08985692262649536 }, // ] ``` --- Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).