--- base_model: openai/clip-vit-base-patch16 library_name: transformers.js --- https://huggingface.co/openai/clip-vit-base-patch16 with ONNX weights to be compatible with Transformers.js. ## Usage (Transformers.js) If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using: ```bash npm i @xenova/transformers ``` **Example:** Perform zero-shot image classification with the `pipeline` API. ```js const classifier = await pipeline('zero-shot-image-classification', 'Xenova/clip-vit-base-patch16'); const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/tiger.jpg'; const output = await classifier(url, ['tiger', 'horse', 'dog']); // [ // { score: 0.9993917942047119, label: 'tiger' }, // { score: 0.0003519294841680676, label: 'horse' }, // { score: 0.0002562698791734874, label: 'dog' } // ] ``` **Example:** Perform zero-shot image classification with `CLIPModel`. ```js import { AutoTokenizer, AutoProcessor, CLIPModel, RawImage } from '@xenova/transformers'; // Load tokenizer, processor, and model const tokenizer = await AutoTokenizer.from_pretrained('Xenova/clip-vit-base-patch16'); const processor = await AutoProcessor.from_pretrained('Xenova/clip-vit-base-patch16'); const model = await CLIPModel.from_pretrained('Xenova/clip-vit-base-patch16'); // Run tokenization const texts = ['a photo of a car', 'a photo of a football match']; const text_inputs = tokenizer(texts, { padding: true, truncation: true }); // Read image and run processor const image = await RawImage.read('https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/football-match.jpg'); const image_inputs = await processor(image); // Run model with both text and pixel inputs const output = await model({ ...text_inputs, ...image_inputs }); // { // logits_per_image: Tensor { // dims: [ 1, 2 ], // data: Float32Array(2) [ 18.579734802246094, 24.31830596923828 ], // }, // logits_per_text: Tensor { // dims: [ 2, 1 ], // data: Float32Array(2) [ 18.579734802246094, 24.31830596923828 ], // }, // text_embeds: Tensor { // dims: [ 2, 512 ], // data: Float32Array(1024) [ ... ], // }, // image_embeds: Tensor { // dims: [ 1, 512 ], // data: Float32Array(512) [ ... ], // } // } ``` **Example:** Compute text embeddings with `CLIPTextModelWithProjection`. ```js import { AutoTokenizer, CLIPTextModelWithProjection } from '@xenova/transformers'; // Load tokenizer and text model const tokenizer = await AutoTokenizer.from_pretrained('Xenova/clip-vit-base-patch16'); const text_model = await CLIPTextModelWithProjection.from_pretrained('Xenova/clip-vit-base-patch16'); // Run tokenization const texts = ['a photo of a car', 'a photo of a football match']; const text_inputs = tokenizer(texts, { padding: true, truncation: true }); // Compute embeddings const { text_embeds } = await text_model(text_inputs); // Tensor { // dims: [ 2, 512 ], // type: 'float32', // data: Float32Array(1024) [ ... ], // size: 1024 // } ``` **Example:** Compute vision embeddings with `CLIPVisionModelWithProjection`. ```js import { AutoProcessor, CLIPVisionModelWithProjection, RawImage } from '@xenova/transformers'; // Load processor and vision model const processor = await AutoProcessor.from_pretrained('Xenova/clip-vit-base-patch16'); const vision_model = await CLIPVisionModelWithProjection.from_pretrained('Xenova/clip-vit-base-patch16'); // Read image and run processor const image = await RawImage.read('https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/football-match.jpg'); const image_inputs = await processor(image); // Compute embeddings const { image_embeds } = await vision_model(image_inputs); // Tensor { // dims: [ 1, 512 ], // type: 'float32', // data: Float32Array(512) [ ... ], // size: 512 // } ``` --- Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).