Update README.md
Browse files
README.md
CHANGED
@@ -1,1268 +1,53 @@
|
|
1 |
---
|
|
|
2 |
tags:
|
3 |
-
- sentence-transformers
|
4 |
- feature-extraction
|
5 |
- sentence-similarity
|
6 |
- mteb
|
|
|
|
|
|
|
|
|
|
|
7 |
inference: false
|
8 |
license: apache-2.0
|
9 |
-
language:
|
10 |
-
- en
|
11 |
-
- zh
|
12 |
-
model-index:
|
13 |
-
- name: jina-embeddings-v2-base-zh
|
14 |
-
results:
|
15 |
-
- task:
|
16 |
-
type: STS
|
17 |
-
dataset:
|
18 |
-
type: C-MTEB/AFQMC
|
19 |
-
name: MTEB AFQMC
|
20 |
-
config: default
|
21 |
-
split: validation
|
22 |
-
revision: None
|
23 |
-
metrics:
|
24 |
-
- type: cos_sim_pearson
|
25 |
-
value: 48.51403119231363
|
26 |
-
- type: cos_sim_spearman
|
27 |
-
value: 50.5928547846445
|
28 |
-
- type: euclidean_pearson
|
29 |
-
value: 48.750436310559074
|
30 |
-
- type: euclidean_spearman
|
31 |
-
value: 50.50950238691385
|
32 |
-
- type: manhattan_pearson
|
33 |
-
value: 48.7866189440328
|
34 |
-
- type: manhattan_spearman
|
35 |
-
value: 50.58692402017165
|
36 |
-
- task:
|
37 |
-
type: STS
|
38 |
-
dataset:
|
39 |
-
type: C-MTEB/ATEC
|
40 |
-
name: MTEB ATEC
|
41 |
-
config: default
|
42 |
-
split: test
|
43 |
-
revision: None
|
44 |
-
metrics:
|
45 |
-
- type: cos_sim_pearson
|
46 |
-
value: 50.25985700105725
|
47 |
-
- type: cos_sim_spearman
|
48 |
-
value: 51.28815934593989
|
49 |
-
- type: euclidean_pearson
|
50 |
-
value: 52.70329248799904
|
51 |
-
- type: euclidean_spearman
|
52 |
-
value: 50.94101139559258
|
53 |
-
- type: manhattan_pearson
|
54 |
-
value: 52.6647237400892
|
55 |
-
- type: manhattan_spearman
|
56 |
-
value: 50.922441325406176
|
57 |
-
- task:
|
58 |
-
type: Classification
|
59 |
-
dataset:
|
60 |
-
type: mteb/amazon_reviews_multi
|
61 |
-
name: MTEB AmazonReviewsClassification (zh)
|
62 |
-
config: zh
|
63 |
-
split: test
|
64 |
-
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
65 |
-
metrics:
|
66 |
-
- type: accuracy
|
67 |
-
value: 34.944
|
68 |
-
- type: f1
|
69 |
-
value: 34.06478860660109
|
70 |
-
- task:
|
71 |
-
type: STS
|
72 |
-
dataset:
|
73 |
-
type: C-MTEB/BQ
|
74 |
-
name: MTEB BQ
|
75 |
-
config: default
|
76 |
-
split: test
|
77 |
-
revision: None
|
78 |
-
metrics:
|
79 |
-
- type: cos_sim_pearson
|
80 |
-
value: 65.15667035488342
|
81 |
-
- type: cos_sim_spearman
|
82 |
-
value: 66.07110142081
|
83 |
-
- type: euclidean_pearson
|
84 |
-
value: 60.447598102249714
|
85 |
-
- type: euclidean_spearman
|
86 |
-
value: 61.826575796578766
|
87 |
-
- type: manhattan_pearson
|
88 |
-
value: 60.39364279354984
|
89 |
-
- type: manhattan_spearman
|
90 |
-
value: 61.78743491223281
|
91 |
-
- task:
|
92 |
-
type: Clustering
|
93 |
-
dataset:
|
94 |
-
type: C-MTEB/CLSClusteringP2P
|
95 |
-
name: MTEB CLSClusteringP2P
|
96 |
-
config: default
|
97 |
-
split: test
|
98 |
-
revision: None
|
99 |
-
metrics:
|
100 |
-
- type: v_measure
|
101 |
-
value: 39.96714175391701
|
102 |
-
- task:
|
103 |
-
type: Clustering
|
104 |
-
dataset:
|
105 |
-
type: C-MTEB/CLSClusteringS2S
|
106 |
-
name: MTEB CLSClusteringS2S
|
107 |
-
config: default
|
108 |
-
split: test
|
109 |
-
revision: None
|
110 |
-
metrics:
|
111 |
-
- type: v_measure
|
112 |
-
value: 38.39863566717934
|
113 |
-
- task:
|
114 |
-
type: Reranking
|
115 |
-
dataset:
|
116 |
-
type: C-MTEB/CMedQAv1-reranking
|
117 |
-
name: MTEB CMedQAv1
|
118 |
-
config: default
|
119 |
-
split: test
|
120 |
-
revision: None
|
121 |
-
metrics:
|
122 |
-
- type: map
|
123 |
-
value: 83.63680381780644
|
124 |
-
- type: mrr
|
125 |
-
value: 86.16476190476192
|
126 |
-
- task:
|
127 |
-
type: Reranking
|
128 |
-
dataset:
|
129 |
-
type: C-MTEB/CMedQAv2-reranking
|
130 |
-
name: MTEB CMedQAv2
|
131 |
-
config: default
|
132 |
-
split: test
|
133 |
-
revision: None
|
134 |
-
metrics:
|
135 |
-
- type: map
|
136 |
-
value: 83.74350667859487
|
137 |
-
- type: mrr
|
138 |
-
value: 86.10388888888889
|
139 |
-
- task:
|
140 |
-
type: Retrieval
|
141 |
-
dataset:
|
142 |
-
type: C-MTEB/CmedqaRetrieval
|
143 |
-
name: MTEB CmedqaRetrieval
|
144 |
-
config: default
|
145 |
-
split: dev
|
146 |
-
revision: None
|
147 |
-
metrics:
|
148 |
-
- type: map_at_1
|
149 |
-
value: 22.072
|
150 |
-
- type: map_at_10
|
151 |
-
value: 32.942
|
152 |
-
- type: map_at_100
|
153 |
-
value: 34.768
|
154 |
-
- type: map_at_1000
|
155 |
-
value: 34.902
|
156 |
-
- type: map_at_3
|
157 |
-
value: 29.357
|
158 |
-
- type: map_at_5
|
159 |
-
value: 31.236000000000004
|
160 |
-
- type: mrr_at_1
|
161 |
-
value: 34.259
|
162 |
-
- type: mrr_at_10
|
163 |
-
value: 41.957
|
164 |
-
- type: mrr_at_100
|
165 |
-
value: 42.982
|
166 |
-
- type: mrr_at_1000
|
167 |
-
value: 43.042
|
168 |
-
- type: mrr_at_3
|
169 |
-
value: 39.722
|
170 |
-
- type: mrr_at_5
|
171 |
-
value: 40.898
|
172 |
-
- type: ndcg_at_1
|
173 |
-
value: 34.259
|
174 |
-
- type: ndcg_at_10
|
175 |
-
value: 39.153
|
176 |
-
- type: ndcg_at_100
|
177 |
-
value: 46.493
|
178 |
-
- type: ndcg_at_1000
|
179 |
-
value: 49.01
|
180 |
-
- type: ndcg_at_3
|
181 |
-
value: 34.636
|
182 |
-
- type: ndcg_at_5
|
183 |
-
value: 36.278
|
184 |
-
- type: precision_at_1
|
185 |
-
value: 34.259
|
186 |
-
- type: precision_at_10
|
187 |
-
value: 8.815000000000001
|
188 |
-
- type: precision_at_100
|
189 |
-
value: 1.474
|
190 |
-
- type: precision_at_1000
|
191 |
-
value: 0.179
|
192 |
-
- type: precision_at_3
|
193 |
-
value: 19.73
|
194 |
-
- type: precision_at_5
|
195 |
-
value: 14.174000000000001
|
196 |
-
- type: recall_at_1
|
197 |
-
value: 22.072
|
198 |
-
- type: recall_at_10
|
199 |
-
value: 48.484
|
200 |
-
- type: recall_at_100
|
201 |
-
value: 79.035
|
202 |
-
- type: recall_at_1000
|
203 |
-
value: 96.15
|
204 |
-
- type: recall_at_3
|
205 |
-
value: 34.607
|
206 |
-
- type: recall_at_5
|
207 |
-
value: 40.064
|
208 |
-
- task:
|
209 |
-
type: PairClassification
|
210 |
-
dataset:
|
211 |
-
type: C-MTEB/CMNLI
|
212 |
-
name: MTEB Cmnli
|
213 |
-
config: default
|
214 |
-
split: validation
|
215 |
-
revision: None
|
216 |
-
metrics:
|
217 |
-
- type: cos_sim_accuracy
|
218 |
-
value: 76.7047504509922
|
219 |
-
- type: cos_sim_ap
|
220 |
-
value: 85.26649874800871
|
221 |
-
- type: cos_sim_f1
|
222 |
-
value: 78.13528724646915
|
223 |
-
- type: cos_sim_precision
|
224 |
-
value: 71.57587548638132
|
225 |
-
- type: cos_sim_recall
|
226 |
-
value: 86.01823708206688
|
227 |
-
- type: dot_accuracy
|
228 |
-
value: 70.13830426939266
|
229 |
-
- type: dot_ap
|
230 |
-
value: 77.01510412382171
|
231 |
-
- type: dot_f1
|
232 |
-
value: 73.56710042713817
|
233 |
-
- type: dot_precision
|
234 |
-
value: 63.955094991364426
|
235 |
-
- type: dot_recall
|
236 |
-
value: 86.57937806873977
|
237 |
-
- type: euclidean_accuracy
|
238 |
-
value: 75.53818400481059
|
239 |
-
- type: euclidean_ap
|
240 |
-
value: 84.34668448241264
|
241 |
-
- type: euclidean_f1
|
242 |
-
value: 77.51741608613047
|
243 |
-
- type: euclidean_precision
|
244 |
-
value: 70.65614777756399
|
245 |
-
- type: euclidean_recall
|
246 |
-
value: 85.85457096095394
|
247 |
-
- type: manhattan_accuracy
|
248 |
-
value: 75.49007817197835
|
249 |
-
- type: manhattan_ap
|
250 |
-
value: 84.40297506704299
|
251 |
-
- type: manhattan_f1
|
252 |
-
value: 77.63185324160932
|
253 |
-
- type: manhattan_precision
|
254 |
-
value: 70.03949595636637
|
255 |
-
- type: manhattan_recall
|
256 |
-
value: 87.07037643207856
|
257 |
-
- type: max_accuracy
|
258 |
-
value: 76.7047504509922
|
259 |
-
- type: max_ap
|
260 |
-
value: 85.26649874800871
|
261 |
-
- type: max_f1
|
262 |
-
value: 78.13528724646915
|
263 |
-
- task:
|
264 |
-
type: Retrieval
|
265 |
-
dataset:
|
266 |
-
type: C-MTEB/CovidRetrieval
|
267 |
-
name: MTEB CovidRetrieval
|
268 |
-
config: default
|
269 |
-
split: dev
|
270 |
-
revision: None
|
271 |
-
metrics:
|
272 |
-
- type: map_at_1
|
273 |
-
value: 69.178
|
274 |
-
- type: map_at_10
|
275 |
-
value: 77.523
|
276 |
-
- type: map_at_100
|
277 |
-
value: 77.793
|
278 |
-
- type: map_at_1000
|
279 |
-
value: 77.79899999999999
|
280 |
-
- type: map_at_3
|
281 |
-
value: 75.878
|
282 |
-
- type: map_at_5
|
283 |
-
value: 76.849
|
284 |
-
- type: mrr_at_1
|
285 |
-
value: 69.44200000000001
|
286 |
-
- type: mrr_at_10
|
287 |
-
value: 77.55
|
288 |
-
- type: mrr_at_100
|
289 |
-
value: 77.819
|
290 |
-
- type: mrr_at_1000
|
291 |
-
value: 77.826
|
292 |
-
- type: mrr_at_3
|
293 |
-
value: 75.957
|
294 |
-
- type: mrr_at_5
|
295 |
-
value: 76.916
|
296 |
-
- type: ndcg_at_1
|
297 |
-
value: 69.44200000000001
|
298 |
-
- type: ndcg_at_10
|
299 |
-
value: 81.217
|
300 |
-
- type: ndcg_at_100
|
301 |
-
value: 82.45
|
302 |
-
- type: ndcg_at_1000
|
303 |
-
value: 82.636
|
304 |
-
- type: ndcg_at_3
|
305 |
-
value: 77.931
|
306 |
-
- type: ndcg_at_5
|
307 |
-
value: 79.655
|
308 |
-
- type: precision_at_1
|
309 |
-
value: 69.44200000000001
|
310 |
-
- type: precision_at_10
|
311 |
-
value: 9.357
|
312 |
-
- type: precision_at_100
|
313 |
-
value: 0.993
|
314 |
-
- type: precision_at_1000
|
315 |
-
value: 0.101
|
316 |
-
- type: precision_at_3
|
317 |
-
value: 28.1
|
318 |
-
- type: precision_at_5
|
319 |
-
value: 17.724
|
320 |
-
- type: recall_at_1
|
321 |
-
value: 69.178
|
322 |
-
- type: recall_at_10
|
323 |
-
value: 92.624
|
324 |
-
- type: recall_at_100
|
325 |
-
value: 98.209
|
326 |
-
- type: recall_at_1000
|
327 |
-
value: 99.684
|
328 |
-
- type: recall_at_3
|
329 |
-
value: 83.772
|
330 |
-
- type: recall_at_5
|
331 |
-
value: 87.882
|
332 |
-
- task:
|
333 |
-
type: Retrieval
|
334 |
-
dataset:
|
335 |
-
type: C-MTEB/DuRetrieval
|
336 |
-
name: MTEB DuRetrieval
|
337 |
-
config: default
|
338 |
-
split: dev
|
339 |
-
revision: None
|
340 |
-
metrics:
|
341 |
-
- type: map_at_1
|
342 |
-
value: 25.163999999999998
|
343 |
-
- type: map_at_10
|
344 |
-
value: 76.386
|
345 |
-
- type: map_at_100
|
346 |
-
value: 79.339
|
347 |
-
- type: map_at_1000
|
348 |
-
value: 79.39500000000001
|
349 |
-
- type: map_at_3
|
350 |
-
value: 52.959
|
351 |
-
- type: map_at_5
|
352 |
-
value: 66.59
|
353 |
-
- type: mrr_at_1
|
354 |
-
value: 87.9
|
355 |
-
- type: mrr_at_10
|
356 |
-
value: 91.682
|
357 |
-
- type: mrr_at_100
|
358 |
-
value: 91.747
|
359 |
-
- type: mrr_at_1000
|
360 |
-
value: 91.751
|
361 |
-
- type: mrr_at_3
|
362 |
-
value: 91.267
|
363 |
-
- type: mrr_at_5
|
364 |
-
value: 91.527
|
365 |
-
- type: ndcg_at_1
|
366 |
-
value: 87.9
|
367 |
-
- type: ndcg_at_10
|
368 |
-
value: 84.569
|
369 |
-
- type: ndcg_at_100
|
370 |
-
value: 87.83800000000001
|
371 |
-
- type: ndcg_at_1000
|
372 |
-
value: 88.322
|
373 |
-
- type: ndcg_at_3
|
374 |
-
value: 83.473
|
375 |
-
- type: ndcg_at_5
|
376 |
-
value: 82.178
|
377 |
-
- type: precision_at_1
|
378 |
-
value: 87.9
|
379 |
-
- type: precision_at_10
|
380 |
-
value: 40.605000000000004
|
381 |
-
- type: precision_at_100
|
382 |
-
value: 4.752
|
383 |
-
- type: precision_at_1000
|
384 |
-
value: 0.488
|
385 |
-
- type: precision_at_3
|
386 |
-
value: 74.9
|
387 |
-
- type: precision_at_5
|
388 |
-
value: 62.96000000000001
|
389 |
-
- type: recall_at_1
|
390 |
-
value: 25.163999999999998
|
391 |
-
- type: recall_at_10
|
392 |
-
value: 85.97399999999999
|
393 |
-
- type: recall_at_100
|
394 |
-
value: 96.63000000000001
|
395 |
-
- type: recall_at_1000
|
396 |
-
value: 99.016
|
397 |
-
- type: recall_at_3
|
398 |
-
value: 55.611999999999995
|
399 |
-
- type: recall_at_5
|
400 |
-
value: 71.936
|
401 |
-
- task:
|
402 |
-
type: Retrieval
|
403 |
-
dataset:
|
404 |
-
type: C-MTEB/EcomRetrieval
|
405 |
-
name: MTEB EcomRetrieval
|
406 |
-
config: default
|
407 |
-
split: dev
|
408 |
-
revision: None
|
409 |
-
metrics:
|
410 |
-
- type: map_at_1
|
411 |
-
value: 48.6
|
412 |
-
- type: map_at_10
|
413 |
-
value: 58.831
|
414 |
-
- type: map_at_100
|
415 |
-
value: 59.427
|
416 |
-
- type: map_at_1000
|
417 |
-
value: 59.44199999999999
|
418 |
-
- type: map_at_3
|
419 |
-
value: 56.383
|
420 |
-
- type: map_at_5
|
421 |
-
value: 57.753
|
422 |
-
- type: mrr_at_1
|
423 |
-
value: 48.6
|
424 |
-
- type: mrr_at_10
|
425 |
-
value: 58.831
|
426 |
-
- type: mrr_at_100
|
427 |
-
value: 59.427
|
428 |
-
- type: mrr_at_1000
|
429 |
-
value: 59.44199999999999
|
430 |
-
- type: mrr_at_3
|
431 |
-
value: 56.383
|
432 |
-
- type: mrr_at_5
|
433 |
-
value: 57.753
|
434 |
-
- type: ndcg_at_1
|
435 |
-
value: 48.6
|
436 |
-
- type: ndcg_at_10
|
437 |
-
value: 63.951
|
438 |
-
- type: ndcg_at_100
|
439 |
-
value: 66.72200000000001
|
440 |
-
- type: ndcg_at_1000
|
441 |
-
value: 67.13900000000001
|
442 |
-
- type: ndcg_at_3
|
443 |
-
value: 58.882
|
444 |
-
- type: ndcg_at_5
|
445 |
-
value: 61.373
|
446 |
-
- type: precision_at_1
|
447 |
-
value: 48.6
|
448 |
-
- type: precision_at_10
|
449 |
-
value: 8.01
|
450 |
-
- type: precision_at_100
|
451 |
-
value: 0.928
|
452 |
-
- type: precision_at_1000
|
453 |
-
value: 0.096
|
454 |
-
- type: precision_at_3
|
455 |
-
value: 22.033
|
456 |
-
- type: precision_at_5
|
457 |
-
value: 14.44
|
458 |
-
- type: recall_at_1
|
459 |
-
value: 48.6
|
460 |
-
- type: recall_at_10
|
461 |
-
value: 80.10000000000001
|
462 |
-
- type: recall_at_100
|
463 |
-
value: 92.80000000000001
|
464 |
-
- type: recall_at_1000
|
465 |
-
value: 96.1
|
466 |
-
- type: recall_at_3
|
467 |
-
value: 66.10000000000001
|
468 |
-
- type: recall_at_5
|
469 |
-
value: 72.2
|
470 |
-
- task:
|
471 |
-
type: Classification
|
472 |
-
dataset:
|
473 |
-
type: C-MTEB/IFlyTek-classification
|
474 |
-
name: MTEB IFlyTek
|
475 |
-
config: default
|
476 |
-
split: validation
|
477 |
-
revision: None
|
478 |
-
metrics:
|
479 |
-
- type: accuracy
|
480 |
-
value: 47.36437091188918
|
481 |
-
- type: f1
|
482 |
-
value: 36.60946954228577
|
483 |
-
- task:
|
484 |
-
type: Classification
|
485 |
-
dataset:
|
486 |
-
type: C-MTEB/JDReview-classification
|
487 |
-
name: MTEB JDReview
|
488 |
-
config: default
|
489 |
-
split: test
|
490 |
-
revision: None
|
491 |
-
metrics:
|
492 |
-
- type: accuracy
|
493 |
-
value: 79.5684803001876
|
494 |
-
- type: ap
|
495 |
-
value: 42.671935929201524
|
496 |
-
- type: f1
|
497 |
-
value: 73.31912729103752
|
498 |
-
- task:
|
499 |
-
type: STS
|
500 |
-
dataset:
|
501 |
-
type: C-MTEB/LCQMC
|
502 |
-
name: MTEB LCQMC
|
503 |
-
config: default
|
504 |
-
split: test
|
505 |
-
revision: None
|
506 |
-
metrics:
|
507 |
-
- type: cos_sim_pearson
|
508 |
-
value: 68.62670112113864
|
509 |
-
- type: cos_sim_spearman
|
510 |
-
value: 75.74009123170768
|
511 |
-
- type: euclidean_pearson
|
512 |
-
value: 73.93002595958237
|
513 |
-
- type: euclidean_spearman
|
514 |
-
value: 75.35222935003587
|
515 |
-
- type: manhattan_pearson
|
516 |
-
value: 73.89870445158144
|
517 |
-
- type: manhattan_spearman
|
518 |
-
value: 75.31714936339398
|
519 |
-
- task:
|
520 |
-
type: Reranking
|
521 |
-
dataset:
|
522 |
-
type: C-MTEB/Mmarco-reranking
|
523 |
-
name: MTEB MMarcoReranking
|
524 |
-
config: default
|
525 |
-
split: dev
|
526 |
-
revision: None
|
527 |
-
metrics:
|
528 |
-
- type: map
|
529 |
-
value: 31.5372713650176
|
530 |
-
- type: mrr
|
531 |
-
value: 30.163095238095238
|
532 |
-
- task:
|
533 |
-
type: Retrieval
|
534 |
-
dataset:
|
535 |
-
type: C-MTEB/MMarcoRetrieval
|
536 |
-
name: MTEB MMarcoRetrieval
|
537 |
-
config: default
|
538 |
-
split: dev
|
539 |
-
revision: None
|
540 |
-
metrics:
|
541 |
-
- type: map_at_1
|
542 |
-
value: 65.054
|
543 |
-
- type: map_at_10
|
544 |
-
value: 74.156
|
545 |
-
- type: map_at_100
|
546 |
-
value: 74.523
|
547 |
-
- type: map_at_1000
|
548 |
-
value: 74.535
|
549 |
-
- type: map_at_3
|
550 |
-
value: 72.269
|
551 |
-
- type: map_at_5
|
552 |
-
value: 73.41
|
553 |
-
- type: mrr_at_1
|
554 |
-
value: 67.24900000000001
|
555 |
-
- type: mrr_at_10
|
556 |
-
value: 74.78399999999999
|
557 |
-
- type: mrr_at_100
|
558 |
-
value: 75.107
|
559 |
-
- type: mrr_at_1000
|
560 |
-
value: 75.117
|
561 |
-
- type: mrr_at_3
|
562 |
-
value: 73.13499999999999
|
563 |
-
- type: mrr_at_5
|
564 |
-
value: 74.13499999999999
|
565 |
-
- type: ndcg_at_1
|
566 |
-
value: 67.24900000000001
|
567 |
-
- type: ndcg_at_10
|
568 |
-
value: 77.96300000000001
|
569 |
-
- type: ndcg_at_100
|
570 |
-
value: 79.584
|
571 |
-
- type: ndcg_at_1000
|
572 |
-
value: 79.884
|
573 |
-
- type: ndcg_at_3
|
574 |
-
value: 74.342
|
575 |
-
- type: ndcg_at_5
|
576 |
-
value: 76.278
|
577 |
-
- type: precision_at_1
|
578 |
-
value: 67.24900000000001
|
579 |
-
- type: precision_at_10
|
580 |
-
value: 9.466
|
581 |
-
- type: precision_at_100
|
582 |
-
value: 1.027
|
583 |
-
- type: precision_at_1000
|
584 |
-
value: 0.105
|
585 |
-
- type: precision_at_3
|
586 |
-
value: 27.955999999999996
|
587 |
-
- type: precision_at_5
|
588 |
-
value: 17.817
|
589 |
-
- type: recall_at_1
|
590 |
-
value: 65.054
|
591 |
-
- type: recall_at_10
|
592 |
-
value: 89.113
|
593 |
-
- type: recall_at_100
|
594 |
-
value: 96.369
|
595 |
-
- type: recall_at_1000
|
596 |
-
value: 98.714
|
597 |
-
- type: recall_at_3
|
598 |
-
value: 79.45400000000001
|
599 |
-
- type: recall_at_5
|
600 |
-
value: 84.06
|
601 |
-
- task:
|
602 |
-
type: Classification
|
603 |
-
dataset:
|
604 |
-
type: mteb/amazon_massive_intent
|
605 |
-
name: MTEB MassiveIntentClassification (zh-CN)
|
606 |
-
config: zh-CN
|
607 |
-
split: test
|
608 |
-
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
609 |
-
metrics:
|
610 |
-
- type: accuracy
|
611 |
-
value: 68.1977135171486
|
612 |
-
- type: f1
|
613 |
-
value: 67.23114308718404
|
614 |
-
- task:
|
615 |
-
type: Classification
|
616 |
-
dataset:
|
617 |
-
type: mteb/amazon_massive_scenario
|
618 |
-
name: MTEB MassiveScenarioClassification (zh-CN)
|
619 |
-
config: zh-CN
|
620 |
-
split: test
|
621 |
-
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
622 |
-
metrics:
|
623 |
-
- type: accuracy
|
624 |
-
value: 71.92669804976462
|
625 |
-
- type: f1
|
626 |
-
value: 72.90628475628779
|
627 |
-
- task:
|
628 |
-
type: Retrieval
|
629 |
-
dataset:
|
630 |
-
type: C-MTEB/MedicalRetrieval
|
631 |
-
name: MTEB MedicalRetrieval
|
632 |
-
config: default
|
633 |
-
split: dev
|
634 |
-
revision: None
|
635 |
-
metrics:
|
636 |
-
- type: map_at_1
|
637 |
-
value: 49.2
|
638 |
-
- type: map_at_10
|
639 |
-
value: 54.539
|
640 |
-
- type: map_at_100
|
641 |
-
value: 55.135
|
642 |
-
- type: map_at_1000
|
643 |
-
value: 55.19199999999999
|
644 |
-
- type: map_at_3
|
645 |
-
value: 53.383
|
646 |
-
- type: map_at_5
|
647 |
-
value: 54.142999999999994
|
648 |
-
- type: mrr_at_1
|
649 |
-
value: 49.2
|
650 |
-
- type: mrr_at_10
|
651 |
-
value: 54.539
|
652 |
-
- type: mrr_at_100
|
653 |
-
value: 55.135999999999996
|
654 |
-
- type: mrr_at_1000
|
655 |
-
value: 55.19199999999999
|
656 |
-
- type: mrr_at_3
|
657 |
-
value: 53.383
|
658 |
-
- type: mrr_at_5
|
659 |
-
value: 54.142999999999994
|
660 |
-
- type: ndcg_at_1
|
661 |
-
value: 49.2
|
662 |
-
- type: ndcg_at_10
|
663 |
-
value: 57.123000000000005
|
664 |
-
- type: ndcg_at_100
|
665 |
-
value: 60.21300000000001
|
666 |
-
- type: ndcg_at_1000
|
667 |
-
value: 61.915
|
668 |
-
- type: ndcg_at_3
|
669 |
-
value: 54.772
|
670 |
-
- type: ndcg_at_5
|
671 |
-
value: 56.157999999999994
|
672 |
-
- type: precision_at_1
|
673 |
-
value: 49.2
|
674 |
-
- type: precision_at_10
|
675 |
-
value: 6.52
|
676 |
-
- type: precision_at_100
|
677 |
-
value: 0.8009999999999999
|
678 |
-
- type: precision_at_1000
|
679 |
-
value: 0.094
|
680 |
-
- type: precision_at_3
|
681 |
-
value: 19.6
|
682 |
-
- type: precision_at_5
|
683 |
-
value: 12.44
|
684 |
-
- type: recall_at_1
|
685 |
-
value: 49.2
|
686 |
-
- type: recall_at_10
|
687 |
-
value: 65.2
|
688 |
-
- type: recall_at_100
|
689 |
-
value: 80.10000000000001
|
690 |
-
- type: recall_at_1000
|
691 |
-
value: 93.89999999999999
|
692 |
-
- type: recall_at_3
|
693 |
-
value: 58.8
|
694 |
-
- type: recall_at_5
|
695 |
-
value: 62.2
|
696 |
-
- task:
|
697 |
-
type: Classification
|
698 |
-
dataset:
|
699 |
-
type: C-MTEB/MultilingualSentiment-classification
|
700 |
-
name: MTEB MultilingualSentiment
|
701 |
-
config: default
|
702 |
-
split: validation
|
703 |
-
revision: None
|
704 |
-
metrics:
|
705 |
-
- type: accuracy
|
706 |
-
value: 63.29333333333334
|
707 |
-
- type: f1
|
708 |
-
value: 63.03293854259612
|
709 |
-
- task:
|
710 |
-
type: PairClassification
|
711 |
-
dataset:
|
712 |
-
type: C-MTEB/OCNLI
|
713 |
-
name: MTEB Ocnli
|
714 |
-
config: default
|
715 |
-
split: validation
|
716 |
-
revision: None
|
717 |
-
metrics:
|
718 |
-
- type: cos_sim_accuracy
|
719 |
-
value: 75.69030860855442
|
720 |
-
- type: cos_sim_ap
|
721 |
-
value: 80.6157833772759
|
722 |
-
- type: cos_sim_f1
|
723 |
-
value: 77.87524366471735
|
724 |
-
- type: cos_sim_precision
|
725 |
-
value: 72.3076923076923
|
726 |
-
- type: cos_sim_recall
|
727 |
-
value: 84.37170010559663
|
728 |
-
- type: dot_accuracy
|
729 |
-
value: 67.78559826746074
|
730 |
-
- type: dot_ap
|
731 |
-
value: 72.00871467527499
|
732 |
-
- type: dot_f1
|
733 |
-
value: 72.58722247394654
|
734 |
-
- type: dot_precision
|
735 |
-
value: 63.57142857142857
|
736 |
-
- type: dot_recall
|
737 |
-
value: 84.58289334741288
|
738 |
-
- type: euclidean_accuracy
|
739 |
-
value: 75.20303194369248
|
740 |
-
- type: euclidean_ap
|
741 |
-
value: 80.98587256415605
|
742 |
-
- type: euclidean_f1
|
743 |
-
value: 77.26396917148362
|
744 |
-
- type: euclidean_precision
|
745 |
-
value: 71.03631532329496
|
746 |
-
- type: euclidean_recall
|
747 |
-
value: 84.68848996832101
|
748 |
-
- type: manhattan_accuracy
|
749 |
-
value: 75.20303194369248
|
750 |
-
- type: manhattan_ap
|
751 |
-
value: 80.93460699513219
|
752 |
-
- type: manhattan_f1
|
753 |
-
value: 77.124773960217
|
754 |
-
- type: manhattan_precision
|
755 |
-
value: 67.43083003952569
|
756 |
-
- type: manhattan_recall
|
757 |
-
value: 90.07391763463569
|
758 |
-
- type: max_accuracy
|
759 |
-
value: 75.69030860855442
|
760 |
-
- type: max_ap
|
761 |
-
value: 80.98587256415605
|
762 |
-
- type: max_f1
|
763 |
-
value: 77.87524366471735
|
764 |
-
- task:
|
765 |
-
type: Classification
|
766 |
-
dataset:
|
767 |
-
type: C-MTEB/OnlineShopping-classification
|
768 |
-
name: MTEB OnlineShopping
|
769 |
-
config: default
|
770 |
-
split: test
|
771 |
-
revision: None
|
772 |
-
metrics:
|
773 |
-
- type: accuracy
|
774 |
-
value: 87.00000000000001
|
775 |
-
- type: ap
|
776 |
-
value: 83.24372135949511
|
777 |
-
- type: f1
|
778 |
-
value: 86.95554191530607
|
779 |
-
- task:
|
780 |
-
type: STS
|
781 |
-
dataset:
|
782 |
-
type: C-MTEB/PAWSX
|
783 |
-
name: MTEB PAWSX
|
784 |
-
config: default
|
785 |
-
split: test
|
786 |
-
revision: None
|
787 |
-
metrics:
|
788 |
-
- type: cos_sim_pearson
|
789 |
-
value: 37.57616811591219
|
790 |
-
- type: cos_sim_spearman
|
791 |
-
value: 41.490259084930045
|
792 |
-
- type: euclidean_pearson
|
793 |
-
value: 38.9155043692188
|
794 |
-
- type: euclidean_spearman
|
795 |
-
value: 39.16056534305623
|
796 |
-
- type: manhattan_pearson
|
797 |
-
value: 38.76569892264335
|
798 |
-
- type: manhattan_spearman
|
799 |
-
value: 38.99891685590743
|
800 |
-
- task:
|
801 |
-
type: STS
|
802 |
-
dataset:
|
803 |
-
type: C-MTEB/QBQTC
|
804 |
-
name: MTEB QBQTC
|
805 |
-
config: default
|
806 |
-
split: test
|
807 |
-
revision: None
|
808 |
-
metrics:
|
809 |
-
- type: cos_sim_pearson
|
810 |
-
value: 35.44858610359665
|
811 |
-
- type: cos_sim_spearman
|
812 |
-
value: 38.11128146262466
|
813 |
-
- type: euclidean_pearson
|
814 |
-
value: 31.928644189822457
|
815 |
-
- type: euclidean_spearman
|
816 |
-
value: 34.384936631696554
|
817 |
-
- type: manhattan_pearson
|
818 |
-
value: 31.90586687414376
|
819 |
-
- type: manhattan_spearman
|
820 |
-
value: 34.35770153777186
|
821 |
-
- task:
|
822 |
-
type: STS
|
823 |
-
dataset:
|
824 |
-
type: mteb/sts22-crosslingual-sts
|
825 |
-
name: MTEB STS22 (zh)
|
826 |
-
config: zh
|
827 |
-
split: test
|
828 |
-
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
829 |
-
metrics:
|
830 |
-
- type: cos_sim_pearson
|
831 |
-
value: 66.54931957553592
|
832 |
-
- type: cos_sim_spearman
|
833 |
-
value: 69.25068863016632
|
834 |
-
- type: euclidean_pearson
|
835 |
-
value: 50.26525596106869
|
836 |
-
- type: euclidean_spearman
|
837 |
-
value: 63.83352741910006
|
838 |
-
- type: manhattan_pearson
|
839 |
-
value: 49.98798282198196
|
840 |
-
- type: manhattan_spearman
|
841 |
-
value: 63.87649521907841
|
842 |
-
- task:
|
843 |
-
type: STS
|
844 |
-
dataset:
|
845 |
-
type: C-MTEB/STSB
|
846 |
-
name: MTEB STSB
|
847 |
-
config: default
|
848 |
-
split: test
|
849 |
-
revision: None
|
850 |
-
metrics:
|
851 |
-
- type: cos_sim_pearson
|
852 |
-
value: 82.52782476625825
|
853 |
-
- type: cos_sim_spearman
|
854 |
-
value: 82.55618986168398
|
855 |
-
- type: euclidean_pearson
|
856 |
-
value: 78.48190631687673
|
857 |
-
- type: euclidean_spearman
|
858 |
-
value: 78.39479731354655
|
859 |
-
- type: manhattan_pearson
|
860 |
-
value: 78.51176592165885
|
861 |
-
- type: manhattan_spearman
|
862 |
-
value: 78.42363787303265
|
863 |
-
- task:
|
864 |
-
type: Reranking
|
865 |
-
dataset:
|
866 |
-
type: C-MTEB/T2Reranking
|
867 |
-
name: MTEB T2Reranking
|
868 |
-
config: default
|
869 |
-
split: dev
|
870 |
-
revision: None
|
871 |
-
metrics:
|
872 |
-
- type: map
|
873 |
-
value: 67.36693873615643
|
874 |
-
- type: mrr
|
875 |
-
value: 77.83847701797939
|
876 |
-
- task:
|
877 |
-
type: Retrieval
|
878 |
-
dataset:
|
879 |
-
type: C-MTEB/T2Retrieval
|
880 |
-
name: MTEB T2Retrieval
|
881 |
-
config: default
|
882 |
-
split: dev
|
883 |
-
revision: None
|
884 |
-
metrics:
|
885 |
-
- type: map_at_1
|
886 |
-
value: 25.795
|
887 |
-
- type: map_at_10
|
888 |
-
value: 72.258
|
889 |
-
- type: map_at_100
|
890 |
-
value: 76.049
|
891 |
-
- type: map_at_1000
|
892 |
-
value: 76.134
|
893 |
-
- type: map_at_3
|
894 |
-
value: 50.697
|
895 |
-
- type: map_at_5
|
896 |
-
value: 62.324999999999996
|
897 |
-
- type: mrr_at_1
|
898 |
-
value: 86.634
|
899 |
-
- type: mrr_at_10
|
900 |
-
value: 89.792
|
901 |
-
- type: mrr_at_100
|
902 |
-
value: 89.91900000000001
|
903 |
-
- type: mrr_at_1000
|
904 |
-
value: 89.923
|
905 |
-
- type: mrr_at_3
|
906 |
-
value: 89.224
|
907 |
-
- type: mrr_at_5
|
908 |
-
value: 89.608
|
909 |
-
- type: ndcg_at_1
|
910 |
-
value: 86.634
|
911 |
-
- type: ndcg_at_10
|
912 |
-
value: 80.589
|
913 |
-
- type: ndcg_at_100
|
914 |
-
value: 84.812
|
915 |
-
- type: ndcg_at_1000
|
916 |
-
value: 85.662
|
917 |
-
- type: ndcg_at_3
|
918 |
-
value: 82.169
|
919 |
-
- type: ndcg_at_5
|
920 |
-
value: 80.619
|
921 |
-
- type: precision_at_1
|
922 |
-
value: 86.634
|
923 |
-
- type: precision_at_10
|
924 |
-
value: 40.389
|
925 |
-
- type: precision_at_100
|
926 |
-
value: 4.93
|
927 |
-
- type: precision_at_1000
|
928 |
-
value: 0.513
|
929 |
-
- type: precision_at_3
|
930 |
-
value: 72.104
|
931 |
-
- type: precision_at_5
|
932 |
-
value: 60.425
|
933 |
-
- type: recall_at_1
|
934 |
-
value: 25.795
|
935 |
-
- type: recall_at_10
|
936 |
-
value: 79.565
|
937 |
-
- type: recall_at_100
|
938 |
-
value: 93.24799999999999
|
939 |
-
- type: recall_at_1000
|
940 |
-
value: 97.595
|
941 |
-
- type: recall_at_3
|
942 |
-
value: 52.583999999999996
|
943 |
-
- type: recall_at_5
|
944 |
-
value: 66.175
|
945 |
-
- task:
|
946 |
-
type: Classification
|
947 |
-
dataset:
|
948 |
-
type: C-MTEB/TNews-classification
|
949 |
-
name: MTEB TNews
|
950 |
-
config: default
|
951 |
-
split: validation
|
952 |
-
revision: None
|
953 |
-
metrics:
|
954 |
-
- type: accuracy
|
955 |
-
value: 47.648999999999994
|
956 |
-
- type: f1
|
957 |
-
value: 46.28925837008413
|
958 |
-
- task:
|
959 |
-
type: Clustering
|
960 |
-
dataset:
|
961 |
-
type: C-MTEB/ThuNewsClusteringP2P
|
962 |
-
name: MTEB ThuNewsClusteringP2P
|
963 |
-
config: default
|
964 |
-
split: test
|
965 |
-
revision: None
|
966 |
-
metrics:
|
967 |
-
- type: v_measure
|
968 |
-
value: 54.07641891287953
|
969 |
-
- task:
|
970 |
-
type: Clustering
|
971 |
-
dataset:
|
972 |
-
type: C-MTEB/ThuNewsClusteringS2S
|
973 |
-
name: MTEB ThuNewsClusteringS2S
|
974 |
-
config: default
|
975 |
-
split: test
|
976 |
-
revision: None
|
977 |
-
metrics:
|
978 |
-
- type: v_measure
|
979 |
-
value: 53.423702062353954
|
980 |
-
- task:
|
981 |
-
type: Retrieval
|
982 |
-
dataset:
|
983 |
-
type: C-MTEB/VideoRetrieval
|
984 |
-
name: MTEB VideoRetrieval
|
985 |
-
config: default
|
986 |
-
split: dev
|
987 |
-
revision: None
|
988 |
-
metrics:
|
989 |
-
- type: map_at_1
|
990 |
-
value: 55.7
|
991 |
-
- type: map_at_10
|
992 |
-
value: 65.923
|
993 |
-
- type: map_at_100
|
994 |
-
value: 66.42
|
995 |
-
- type: map_at_1000
|
996 |
-
value: 66.431
|
997 |
-
- type: map_at_3
|
998 |
-
value: 63.9
|
999 |
-
- type: map_at_5
|
1000 |
-
value: 65.225
|
1001 |
-
- type: mrr_at_1
|
1002 |
-
value: 55.60000000000001
|
1003 |
-
- type: mrr_at_10
|
1004 |
-
value: 65.873
|
1005 |
-
- type: mrr_at_100
|
1006 |
-
value: 66.36999999999999
|
1007 |
-
- type: mrr_at_1000
|
1008 |
-
value: 66.381
|
1009 |
-
- type: mrr_at_3
|
1010 |
-
value: 63.849999999999994
|
1011 |
-
- type: mrr_at_5
|
1012 |
-
value: 65.17500000000001
|
1013 |
-
- type: ndcg_at_1
|
1014 |
-
value: 55.7
|
1015 |
-
- type: ndcg_at_10
|
1016 |
-
value: 70.621
|
1017 |
-
- type: ndcg_at_100
|
1018 |
-
value: 72.944
|
1019 |
-
- type: ndcg_at_1000
|
1020 |
-
value: 73.25399999999999
|
1021 |
-
- type: ndcg_at_3
|
1022 |
-
value: 66.547
|
1023 |
-
- type: ndcg_at_5
|
1024 |
-
value: 68.93599999999999
|
1025 |
-
- type: precision_at_1
|
1026 |
-
value: 55.7
|
1027 |
-
- type: precision_at_10
|
1028 |
-
value: 8.52
|
1029 |
-
- type: precision_at_100
|
1030 |
-
value: 0.958
|
1031 |
-
- type: precision_at_1000
|
1032 |
-
value: 0.098
|
1033 |
-
- type: precision_at_3
|
1034 |
-
value: 24.733
|
1035 |
-
- type: precision_at_5
|
1036 |
-
value: 16
|
1037 |
-
- type: recall_at_1
|
1038 |
-
value: 55.7
|
1039 |
-
- type: recall_at_10
|
1040 |
-
value: 85.2
|
1041 |
-
- type: recall_at_100
|
1042 |
-
value: 95.8
|
1043 |
-
- type: recall_at_1000
|
1044 |
-
value: 98.3
|
1045 |
-
- type: recall_at_3
|
1046 |
-
value: 74.2
|
1047 |
-
- type: recall_at_5
|
1048 |
-
value: 80
|
1049 |
-
- task:
|
1050 |
-
type: Classification
|
1051 |
-
dataset:
|
1052 |
-
type: C-MTEB/waimai-classification
|
1053 |
-
name: MTEB Waimai
|
1054 |
-
config: default
|
1055 |
-
split: test
|
1056 |
-
revision: None
|
1057 |
-
metrics:
|
1058 |
-
- type: accuracy
|
1059 |
-
value: 84.54
|
1060 |
-
- type: ap
|
1061 |
-
value: 66.13603199670062
|
1062 |
-
- type: f1
|
1063 |
-
value: 82.61420654584116
|
1064 |
---
|
1065 |
-
<!-- TODO: add evaluation results here -->
|
1066 |
-
<br><br>
|
1067 |
-
|
1068 |
-
<p align="center">
|
1069 |
-
<img src="https://aeiljuispo.cloudimg.io/v7/https://cdn-uploads.huggingface.co/production/uploads/603763514de52ff951d89793/AFoybzd5lpBQXEBrQHuTt.png?w=200&h=200&f=face" alt="Finetuner logo: Finetuner helps you to create experiments in order to improve embeddings on search tasks. It accompanies you to deliver the last mile of performance-tuning for neural search applications." width="150px">
|
1070 |
-
</p>
|
1071 |
-
|
1072 |
-
|
1073 |
-
<p align="center">
|
1074 |
-
<b>The text embedding set trained by <a href="https://jina.ai/"><b>Jina AI</b></a>.</b>
|
1075 |
-
</p>
|
1076 |
-
|
1077 |
-
## Quick Start
|
1078 |
-
|
1079 |
-
The easiest way to starting using `jina-embeddings-v2-base-zh` is to use Jina AI's [Embedding API](https://jina.ai/embeddings/).
|
1080 |
-
|
1081 |
-
## Intended Usage & Model Info
|
1082 |
-
|
1083 |
-
`jina-embeddings-v2-base-zh` is a Chinese/English bilingual text **embedding model** supporting **8192 sequence length**.
|
1084 |
-
It is based on a BERT architecture (JinaBERT) that supports the symmetric bidirectional variant of [ALiBi](https://arxiv.org/abs/2108.12409) to allow longer sequence length.
|
1085 |
-
We have designed it for high performance in mono-lingual & cross-lingual applications and trained it specifically to support mixed Chinese-English input without bias.
|
1086 |
-
Additionally, we provide the following embedding models:
|
1087 |
-
|
1088 |
-
`jina-embeddings-v2-base-zh` 是支持中英双语的**文本向量**模型,它支持长达**8192字符**的文本编码。
|
1089 |
-
该模型的研发基于BERT架构(JinaBERT),JinaBERT是在BERT架构基础上的改进,首次将[ALiBi](https://arxiv.org/abs/2108.12409)应用到编码器架构中以支持更长的序列。
|
1090 |
-
不同于以往的单语言/多语言向量模型,我们设计双语模型来更好的支持单语言(中搜中)以及跨语言(中搜英)文档检索。
|
1091 |
-
除此之外,我们也提供其它向量模型:
|
1092 |
-
|
1093 |
-
- [`jina-embeddings-v2-small-en`](https://huggingface.co/jinaai/jina-embeddings-v2-small-en): 33 million parameters.
|
1094 |
-
- [`jina-embeddings-v2-base-en`](https://huggingface.co/jinaai/jina-embeddings-v2-base-en): 137 million parameters.
|
1095 |
-
- [`jina-embeddings-v2-base-zh`](https://huggingface.co/jinaai/jina-embeddings-v2-base-zh): 161 million parameters Chinese-English Bilingual embeddings **(you are here)**.
|
1096 |
-
- [`jina-embeddings-v2-base-de`](https://huggingface.co/jinaai/jina-embeddings-v2-base-de): 161 million parameters German-English Bilingual embeddings.
|
1097 |
-
- [`jina-embeddings-v2-base-es`](): Spanish-English Bilingual embeddings (soon).
|
1098 |
-
|
1099 |
-
## Data & Parameters
|
1100 |
-
|
1101 |
-
We will publish a report with technical details about the training of the bilingual models soon.
|
1102 |
-
The training of the English model is described in this [technical report](https://arxiv.org/abs/2310.19923).
|
1103 |
-
|
1104 |
-
## Usage
|
1105 |
-
|
1106 |
-
**<details><summary>Please apply mean pooling when integrating the model.</summary>**
|
1107 |
-
<p>
|
1108 |
-
|
1109 |
-
### Why mean pooling?
|
1110 |
|
1111 |
-
|
1112 |
-
It has been proved to be the most effective way to produce high-quality sentence embeddings.
|
1113 |
-
We offer an `encode` function to deal with this.
|
1114 |
|
1115 |
-
|
1116 |
|
1117 |
-
|
1118 |
-
import torch
|
1119 |
-
import torch.nn.functional as F
|
1120 |
-
from transformers import AutoTokenizer, AutoModel
|
1121 |
-
|
1122 |
-
def mean_pooling(model_output, attention_mask):
|
1123 |
-
token_embeddings = model_output[0]
|
1124 |
-
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
1125 |
-
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
1126 |
-
|
1127 |
-
sentences = ['How is the weather today?', '今天天气怎么样?']
|
1128 |
-
|
1129 |
-
tokenizer = AutoTokenizer.from_pretrained('jinaai/jina-embeddings-v2-base-zh')
|
1130 |
-
model = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-base-zh', trust_remote_code=True)
|
1131 |
-
|
1132 |
-
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
1133 |
-
|
1134 |
-
with torch.no_grad():
|
1135 |
-
model_output = model(**encoded_input)
|
1136 |
-
|
1137 |
-
embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
1138 |
-
embeddings = F.normalize(embeddings, p=2, dim=1)
|
1139 |
-
```
|
1140 |
-
|
1141 |
-
</p>
|
1142 |
-
</details>
|
1143 |
-
|
1144 |
-
You can use Jina Embedding models directly from transformers package.
|
1145 |
-
|
1146 |
-
First, you need to make sure that you are logged into huggingface. You can either use the huggingface-cli tool (after installing the `transformers` package) and pass your [hugginface access token](https://huggingface.co/docs/hub/security-tokens):
|
1147 |
-
```bash
|
1148 |
-
huggingface-cli login
|
1149 |
-
```
|
1150 |
-
Alternatively, you can provide the access token as an environment variable in the shell:
|
1151 |
```bash
|
1152 |
-
|
1153 |
```
|
1154 |
-
or in Python:
|
1155 |
-
```python
|
1156 |
-
import os
|
1157 |
|
1158 |
-
|
1159 |
-
```
|
1160 |
|
1161 |
-
|
1162 |
-
|
1163 |
-
!pip install transformers
|
1164 |
-
from transformers import AutoModel
|
1165 |
-
from numpy.linalg import norm
|
1166 |
|
1167 |
-
|
1168 |
-
|
1169 |
-
|
1170 |
-
|
1171 |
-
```
|
1172 |
|
1173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1174 |
|
1175 |
-
|
1176 |
-
|
1177 |
-
|
1178 |
-
|
1179 |
-
)
|
1180 |
```
|
1181 |
|
1182 |
-
|
1183 |
-
|
1184 |
-
```python
|
1185 |
-
!pip install -U sentence-transformers
|
1186 |
-
from sentence_transformers import SentenceTransformer
|
1187 |
-
from numpy.linalg import norm
|
1188 |
-
|
1189 |
-
cos_sim = lambda a,b: (a @ b.T) / (norm(a)*norm(b))
|
1190 |
-
model = SentenceTransformer('jinaai/jina-embeddings-v2-base-zh', trust_remote_code=True)
|
1191 |
-
embeddings = model.encode(['How is the weather today?', '今天天气怎么样?'])
|
1192 |
-
print(cos_sim(embeddings[0], embeddings[1]))
|
1193 |
-
```
|
1194 |
-
|
1195 |
-
Using the its latest release (v2.3.0) sentence-transformers also supports Jina embeddings (Please make sure that you are logged into huggingface as well):
|
1196 |
-
|
1197 |
-
```python
|
1198 |
-
!pip install -U sentence-transformers
|
1199 |
-
from sentence_transformers import SentenceTransformer
|
1200 |
-
from sentence_transformers.util import cos_sim
|
1201 |
-
|
1202 |
-
model = SentenceTransformer(
|
1203 |
-
"jinaai/jina-embeddings-v2-base-de", # switch to en/zh for English or Chinese
|
1204 |
-
trust_remote_code=True
|
1205 |
-
)
|
1206 |
-
|
1207 |
-
# control your input sequence length up to 8192
|
1208 |
-
model.max_seq_length = 1024
|
1209 |
-
|
1210 |
-
embeddings = model.encode([
|
1211 |
-
'How is the weather today?',
|
1212 |
-
'Wie ist das Wetter heute?'
|
1213 |
-
])
|
1214 |
-
print(cos_sim(embeddings[0], embeddings[1]))
|
1215 |
-
```
|
1216 |
-
|
1217 |
-
## Alternatives to Using Transformers Package
|
1218 |
-
|
1219 |
-
1. _Managed SaaS_: Get started with a free key on Jina AI's [Embedding API](https://jina.ai/embeddings/).
|
1220 |
-
2. _Private and high-performance deployment_: Get started by picking from our suite of models and deploy them on [AWS Sagemaker](https://aws.amazon.com/marketplace/seller-profile?id=seller-stch2ludm6vgy).
|
1221 |
-
|
1222 |
-
## Use Jina Embeddings for RAG
|
1223 |
-
|
1224 |
-
According to the latest blog post from [LLamaIndex](https://blog.llamaindex.ai/boosting-rag-picking-the-best-embedding-reranker-models-42d079022e83),
|
1225 |
-
|
1226 |
-
> In summary, to achieve the peak performance in both hit rate and MRR, the combination of OpenAI or JinaAI-Base embeddings with the CohereRerank/bge-reranker-large reranker stands out.
|
1227 |
-
|
1228 |
-
<img src="https://miro.medium.com/v2/resize:fit:4800/format:webp/1*ZP2RVejCZovF3FDCg-Bx3A.png" width="780px">
|
1229 |
-
|
1230 |
-
## Trouble Shooting
|
1231 |
-
|
1232 |
-
**Loading of Model Code failed**
|
1233 |
-
|
1234 |
-
If you forgot to pass the `trust_remote_code=True` flag when calling `AutoModel.from_pretrained` or initializing the model via the `SentenceTransformer` class, you will receive an error that the model weights could not be initialized.
|
1235 |
-
This is caused by tranformers falling back to creating a default BERT model, instead of a jina-embedding model:
|
1236 |
-
|
1237 |
-
```bash
|
1238 |
-
Some weights of the model checkpoint at jinaai/jina-embeddings-v2-base-en were not used when initializing BertModel: ['encoder.layer.2.mlp.layernorm.weight', 'encoder.layer.3.mlp.layernorm.weight', 'encoder.layer.10.mlp.wo.bias', 'encoder.layer.5.mlp.wo.bias', 'encoder.layer.2.mlp.layernorm.bias', 'encoder.layer.1.mlp.gated_layers.weight', 'encoder.layer.5.mlp.gated_layers.weight', 'encoder.layer.8.mlp.layernorm.bias', ...
|
1239 |
-
```
|
1240 |
-
|
1241 |
-
**User is not logged into Huggingface**
|
1242 |
-
|
1243 |
-
The model is only availabe under [gated access](https://huggingface.co/docs/hub/models-gated).
|
1244 |
-
This means you need to be logged into huggingface load load it.
|
1245 |
-
If you receive the following error, you need to provide an access token, either by using the huggingface-cli or providing the token via an environment variable as described above:
|
1246 |
-
```bash
|
1247 |
-
OSError: jinaai/jina-embeddings-v2-base-en is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models'
|
1248 |
-
If this is a private repository, make sure to pass a token having permission to this repo with `use_auth_token` or log in with `huggingface-cli login` and pass `use_auth_token=True`.
|
1249 |
-
```
|
1250 |
-
|
1251 |
-
## Contact
|
1252 |
-
|
1253 |
-
Join our [Discord community](https://discord.jina.ai) and chat with other community members about ideas.
|
1254 |
-
|
1255 |
-
## Citation
|
1256 |
-
|
1257 |
-
If you find Jina Embeddings useful in your research, please cite the following paper:
|
1258 |
|
1259 |
-
|
1260 |
-
@misc{günther2023jina,
|
1261 |
-
title={Jina Embeddings 2: 8192-Token General-Purpose Text Embeddings for Long Documents},
|
1262 |
-
author={Michael Günther and Jackmin Ong and Isabelle Mohr and Alaeddine Abdessalem and Tanguy Abel and Mohammad Kalim Akram and Susana Guzman and Georgios Mastrapas and Saba Sturua and Bo Wang and Maximilian Werk and Nan Wang and Han Xiao},
|
1263 |
-
year={2023},
|
1264 |
-
eprint={2310.19923},
|
1265 |
-
archivePrefix={arXiv},
|
1266 |
-
primaryClass={cs.CL}
|
1267 |
-
}
|
1268 |
-
```
|
|
|
1 |
---
|
2 |
+
library_name: transformers.js
|
3 |
tags:
|
|
|
4 |
- feature-extraction
|
5 |
- sentence-similarity
|
6 |
- mteb
|
7 |
+
- sentence_transformers
|
8 |
+
- transformers
|
9 |
+
language:
|
10 |
+
- zh
|
11 |
+
- en
|
12 |
inference: false
|
13 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
https://huggingface.co/jinaai/jina-embeddings-v2-base-zh with ONNX weights to be compatible with Transformers.js.
|
|
|
|
|
17 |
|
18 |
+
## Usage (Transformers.js)
|
19 |
|
20 |
+
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
```bash
|
22 |
+
npm i @xenova/transformers
|
23 |
```
|
|
|
|
|
|
|
24 |
|
25 |
+
You can then use the model to compute embeddings, as follows:
|
|
|
26 |
|
27 |
+
```js
|
28 |
+
import { pipeline, cos_sim } from '@xenova/transformers';
|
|
|
|
|
|
|
29 |
|
30 |
+
// Create a feature extraction pipeline
|
31 |
+
const extractor = await pipeline('feature-extraction', 'Xenova/jina-embeddings-v2-base-zh', {
|
32 |
+
quantized: false, // Comment out this line to use the quantized version
|
33 |
+
});
|
|
|
34 |
|
35 |
+
// Compute sentence embeddings
|
36 |
+
const texts = ['How is the weather today?', '今天天气怎么样?'];
|
37 |
+
const output = await extractor(texts, { pooling: 'mean', normalize: true });
|
38 |
+
// Tensor {
|
39 |
+
// dims: [2, 768],
|
40 |
+
// type: 'float32',
|
41 |
+
// data: Float32Array(1536)[...],
|
42 |
+
// size: 1536
|
43 |
+
// }
|
44 |
|
45 |
+
// Compute cosine similarity between the two embeddings
|
46 |
+
const score = cos_sim(output[0].data, output[1].data);
|
47 |
+
console.log(score);
|
48 |
+
// 0.7860610759096025
|
|
|
49 |
```
|
50 |
|
51 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|