--- base_model: google/owlv2-base-patch16-ensemble library_name: transformers.js --- https://huggingface.co/google/owlv2-base-patch16-ensemble with ONNX weights to be compatible with Transformers.js. ## Usage (Transformers.js) If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using: ```bash npm i @xenova/transformers ``` **Example:** Zero-shot object detection w/ `Xenova/owlv2-base-patch16-ensemble`. ```js import { pipeline } from '@xenova/transformers'; const detector = await pipeline('zero-shot-object-detection', 'Xenova/owlv2-base-patch16-ensemble'); const url = 'http://images.cocodataset.org/val2017/000000039769.jpg'; const candidate_labels = ['a photo of a cat', 'a photo of a dog']; const output = await detector(url, candidate_labels); console.log(output); // [ // { score: 0.7400985360145569, label: 'a photo of a cat', box: { xmin: 0, ymin: 50, xmax: 323, ymax: 485 } }, // { score: 0.6315087080001831, label: 'a photo of a cat', box: { xmin: 333, ymin: 23, xmax: 658, ymax: 378 } } // ] ``` ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/SwSILPFpBGNE39J3uwXWN.png) --- Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).