File size: 11,336 Bytes
366d154
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
import youtube_transcript_api2
import json
import re
import requests
from transformers import (
    AutoModelForSequenceClassification,
    AutoTokenizer,
    TextClassificationPipeline,
)
from typing import Any, Dict, List

CATEGORIES = [None, 'SPONSOR', 'SELFPROMO', 'INTERACTION']

PROFANITY_RAW = '[ __ ]'  # How YouTube transcribes profanity
PROFANITY_CONVERTED = '*****'  # Safer version for tokenizing

NUM_DECIMALS = 3

# https://www.fincher.org/Utilities/CountryLanguageList.shtml
# https://lingohub.com/developers/supported-locales/language-designators-with-regions
LANGUAGE_PREFERENCE_LIST = ['en-GB', 'en-US', 'en-CA', 'en-AU', 'en-NZ', 'en-ZA',
                            'en-IE', 'en-IN', 'en-JM', 'en-BZ', 'en-TT', 'en-PH', 'en-ZW',
                            'en']


def parse_transcript_json(json_data, granularity):
    assert json_data['wireMagic'] == 'pb3'

    assert granularity in ('word', 'chunk')

    # TODO remove bracketed words?
    # (kiss smacks)
    # (upbeat music)
    # [text goes here]

    # Some manual transcripts aren't that well formatted... but do have punctuation
    # https://www.youtube.com/watch?v=LR9FtWVjk2c

    parsed_transcript = []

    events = json_data['events']

    for event_index, event in enumerate(events):
        segments = event.get('segs')
        if not segments:
            continue

        # This value is known (when phrase appears on screen)
        start_ms = event['tStartMs']
        total_characters = 0

        new_segments = []
        for seg in segments:
            # Replace \n, \t, etc. with space
            text = ' '.join(seg['utf8'].split())

            # Remove zero-width spaces and strip trailing and leading whitespace
            text = text.replace('\u200b', '').replace('\u200c', '').replace(
                '\u200d', '').replace('\ufeff', '').strip()

            # Alternatively,
            # text = text.encode('ascii', 'ignore').decode()

            # Needed for auto-generated transcripts
            text = text.replace(PROFANITY_RAW, PROFANITY_CONVERTED)

            if not text:
                continue

            offset_ms = seg.get('tOffsetMs', 0)

            new_segments.append({
                'text': text,
                'start': round((start_ms + offset_ms)/1000, NUM_DECIMALS)
            })

            total_characters += len(text)

        if not new_segments:
            continue

        if event_index < len(events) - 1:
            next_start_ms = events[event_index + 1]['tStartMs']
            total_event_duration_ms = min(
                event.get('dDurationMs', float('inf')), next_start_ms - start_ms)
        else:
            total_event_duration_ms = event.get('dDurationMs', 0)

        # Ensure duration is non-negative
        total_event_duration_ms = max(total_event_duration_ms, 0)

        avg_seconds_per_character = (
            total_event_duration_ms/total_characters)/1000

        num_char_count = 0
        for seg_index, seg in enumerate(new_segments):
            num_char_count += len(seg['text'])

            # Estimate segment end
            seg_end = seg['start'] + \
                (num_char_count * avg_seconds_per_character)

            if seg_index < len(new_segments) - 1:
                # Do not allow longer than next
                seg_end = min(seg_end, new_segments[seg_index+1]['start'])

            seg['end'] = round(seg_end, NUM_DECIMALS)
            parsed_transcript.append(seg)

    final_parsed_transcript = []
    for i in range(len(parsed_transcript)):

        word_level = granularity == 'word'
        if word_level:
            split_text = parsed_transcript[i]['text'].split()
        elif granularity == 'chunk':
            # Split on space after punctuation
            split_text = re.split(
                r'(?<=[.!?,-;])\s+', parsed_transcript[i]['text'])
            if len(split_text) == 1:
                split_on_whitespace = parsed_transcript[i]['text'].split()

                if len(split_on_whitespace) >= 8:  # Too many words
                    # Rather split on whitespace instead of punctuation
                    split_text = split_on_whitespace
                else:
                    word_level = True
        else:
            raise ValueError('Unknown granularity')

        segment_end = parsed_transcript[i]['end']
        if i < len(parsed_transcript) - 1:
            segment_end = min(segment_end, parsed_transcript[i+1]['start'])

        segment_duration = segment_end - parsed_transcript[i]['start']

        num_chars_in_text = sum(map(len, split_text))

        num_char_count = 0
        current_offset = 0
        for s in split_text:
            num_char_count += len(s)

            next_offset = (num_char_count/num_chars_in_text) * segment_duration

            word_start = round(
                parsed_transcript[i]['start'] + current_offset, NUM_DECIMALS)
            word_end = round(
                parsed_transcript[i]['start'] + next_offset, NUM_DECIMALS)

            # Make the reasonable assumption that min wps is 1.5
            final_parsed_transcript.append({
                'text': s,
                'start': word_start,
                'end': min(word_end, word_start + 1.5) if word_level else word_end
            })
            current_offset = next_offset

    return final_parsed_transcript


def list_transcripts(video_id):
    try:
        return youtube_transcript_api2.YouTubeTranscriptApi.list_transcripts(video_id)
    except json.decoder.JSONDecodeError:
        return None


WORDS_TO_REMOVE = [
    '[Music]'
    '[Applause]'
    '[Laughter]'
]


def get_words(video_id, transcript_type='auto', fallback='manual', filter_words_to_remove=True, granularity='word'):
    """Get parsed video transcript with caching system
    returns None if not processed yet and process is False
    """

    raw_transcript_json = None
    try:
        transcript_list = list_transcripts(video_id)

        if transcript_list is not None:
            if transcript_type == 'manual':
                ts = transcript_list.find_manually_created_transcript(
                    LANGUAGE_PREFERENCE_LIST)
            else:
                ts = transcript_list.find_generated_transcript(
                    LANGUAGE_PREFERENCE_LIST)
            raw_transcript = ts._http_client.get(
                f'{ts._url}&fmt=json3').content
            if raw_transcript:
                raw_transcript_json = json.loads(raw_transcript)

    except (youtube_transcript_api2.TooManyRequests, youtube_transcript_api2.YouTubeRequestFailed):
        raise  # Cannot recover from these errors and do not mark as empty transcript

    except requests.exceptions.RequestException:  # Can recover
        return get_words(video_id, transcript_type, fallback, granularity)

    except youtube_transcript_api2.CouldNotRetrieveTranscript:  # Retrying won't solve
        pass  # Mark as empty transcript

    except json.decoder.JSONDecodeError:
        return get_words(video_id, transcript_type, fallback, granularity)

    if not raw_transcript_json and fallback is not None:
        return get_words(video_id, transcript_type=fallback, fallback=None, granularity=granularity)

    if raw_transcript_json:
        processed_transcript = parse_transcript_json(
            raw_transcript_json, granularity)
        if filter_words_to_remove:
            processed_transcript = list(
                filter(lambda x: x['text'] not in WORDS_TO_REMOVE, processed_transcript))
    else:
        processed_transcript = raw_transcript_json  # Either None or []

    return processed_transcript


def word_start(word):
    return word['start']


def word_end(word):
    return word.get('end', word['start'])


def extract_segment(words, start, end, map_function=None):
    """Extracts all words with time in [start, end]"""

    a = max(binary_search_below(words, 0, len(words), start), 0)
    b = min(binary_search_above(words, -1, len(words) - 1, end) + 1, len(words))

    to_transform = map_function is not None and callable(map_function)

    return [
        map_function(words[i]) if to_transform else words[i] for i in range(a, b)
    ]


def avg(*items):
    return sum(items)/len(items)


def binary_search_below(transcript, start_index, end_index, time):
    if start_index >= end_index:
        return end_index

    middle_index = (start_index + end_index) // 2
    middle = transcript[middle_index]
    middle_time = avg(word_start(middle), word_end(middle))

    if time <= middle_time:
        return binary_search_below(transcript, start_index, middle_index, time)
    else:
        return binary_search_below(transcript, middle_index + 1, end_index, time)


def binary_search_above(transcript, start_index, end_index, time):
    if start_index >= end_index:
        return end_index

    middle_index = (start_index + end_index + 1) // 2
    middle = transcript[middle_index]
    middle_time = avg(word_start(middle), word_end(middle))

    if time >= middle_time:
        return binary_search_above(transcript, middle_index, end_index, time)
    else:
        return binary_search_above(transcript, start_index, middle_index - 1, time)


class SponsorBlockClassificationPipeline(TextClassificationPipeline):
    def __init__(self, model, tokenizer):
        super().__init__(model=model, tokenizer=tokenizer, return_all_scores=True)

    def preprocess(self, video, **tokenizer_kwargs):

        words = get_words(video['video_id'])
        segment_words = extract_segment(words, video['start'], video['end'])
        text = ' '.join(x['text'] for x in segment_words)

        model_inputs = self.tokenizer(
            text, return_tensors=self.framework, **tokenizer_kwargs)
        return {'video': video, 'model_inputs': model_inputs}

    def _forward(self, data):
        model_outputs = self.model(**data['model_inputs'])
        return {'video': data['video'], 'model_outputs': model_outputs}

    def postprocess(self, data, function_to_apply=None, return_all_scores=False):
        model_outputs = data['model_outputs']

        results = super().postprocess(model_outputs, function_to_apply, return_all_scores)

        for result in results:
            result['label_text'] = CATEGORIES[result['label']]

        return results # {**data['video'], 'result': results}


# model_id = "Xenova/sponsorblock-classifier-v2"
# model = AutoModelForSequenceClassification.from_pretrained(model_id)
# tokenizer = AutoTokenizer.from_pretrained(model_id)

# pl = SponsorBlockClassificationPipeline(model=model, tokenizer=tokenizer)
data = [{
    'video_id': 'pqh4LfPeCYs',
    'start': 835.933,
    'end': 927.581,
    'category': 'sponsor'
}]
# print(pl(data))

# MODEL_ID = "Xenova/sponsorblock-classifier-v2"
class PreTrainedPipeline():
    def __init__(self, path: str):
        # load the model
        self.model = AutoModelForSequenceClassification.from_pretrained(path)
        self.tokenizer = AutoTokenizer.from_pretrained(path)
        self.pipeline = SponsorBlockClassificationPipeline(
            model=self.model, tokenizer=self.tokenizer)

    def __call__(self, inputs: str) -> List[Dict[str, Any]]:
        json_data = json.loads(inputs)
        return self.pipeline(json_data)

# a = PreTrainedPipeline('Xenova/sponsorblock-classifier-v2')(json.dumps(data))
# print(a)