Joshua Lochner
Add custom pipeline code
6e9c369
raw
history blame
11.1 kB
import youtube_transcript_api2
import json
import re
import requests
from transformers import (
AutoModelForSequenceClassification,
AutoTokenizer,
TextClassificationPipeline,
)
from typing import Any, Dict, List
CATEGORIES = [None, 'SPONSOR', 'SELFPROMO', 'INTERACTION']
PROFANITY_RAW = '[ __ ]' # How YouTube transcribes profanity
PROFANITY_CONVERTED = '*****' # Safer version for tokenizing
NUM_DECIMALS = 3
# https://www.fincher.org/Utilities/CountryLanguageList.shtml
# https://lingohub.com/developers/supported-locales/language-designators-with-regions
LANGUAGE_PREFERENCE_LIST = ['en-GB', 'en-US', 'en-CA', 'en-AU', 'en-NZ', 'en-ZA',
'en-IE', 'en-IN', 'en-JM', 'en-BZ', 'en-TT', 'en-PH', 'en-ZW',
'en']
def parse_transcript_json(json_data, granularity):
assert json_data['wireMagic'] == 'pb3'
assert granularity in ('word', 'chunk')
# TODO remove bracketed words?
# (kiss smacks)
# (upbeat music)
# [text goes here]
# Some manual transcripts aren't that well formatted... but do have punctuation
# https://www.youtube.com/watch?v=LR9FtWVjk2c
parsed_transcript = []
events = json_data['events']
for event_index, event in enumerate(events):
segments = event.get('segs')
if not segments:
continue
# This value is known (when phrase appears on screen)
start_ms = event['tStartMs']
total_characters = 0
new_segments = []
for seg in segments:
# Replace \n, \t, etc. with space
text = ' '.join(seg['utf8'].split())
# Remove zero-width spaces and strip trailing and leading whitespace
text = text.replace('\u200b', '').replace('\u200c', '').replace(
'\u200d', '').replace('\ufeff', '').strip()
# Alternatively,
# text = text.encode('ascii', 'ignore').decode()
# Needed for auto-generated transcripts
text = text.replace(PROFANITY_RAW, PROFANITY_CONVERTED)
if not text:
continue
offset_ms = seg.get('tOffsetMs', 0)
new_segments.append({
'text': text,
'start': round((start_ms + offset_ms)/1000, NUM_DECIMALS)
})
total_characters += len(text)
if not new_segments:
continue
if event_index < len(events) - 1:
next_start_ms = events[event_index + 1]['tStartMs']
total_event_duration_ms = min(
event.get('dDurationMs', float('inf')), next_start_ms - start_ms)
else:
total_event_duration_ms = event.get('dDurationMs', 0)
# Ensure duration is non-negative
total_event_duration_ms = max(total_event_duration_ms, 0)
avg_seconds_per_character = (
total_event_duration_ms/total_characters)/1000
num_char_count = 0
for seg_index, seg in enumerate(new_segments):
num_char_count += len(seg['text'])
# Estimate segment end
seg_end = seg['start'] + \
(num_char_count * avg_seconds_per_character)
if seg_index < len(new_segments) - 1:
# Do not allow longer than next
seg_end = min(seg_end, new_segments[seg_index+1]['start'])
seg['end'] = round(seg_end, NUM_DECIMALS)
parsed_transcript.append(seg)
final_parsed_transcript = []
for i in range(len(parsed_transcript)):
word_level = granularity == 'word'
if word_level:
split_text = parsed_transcript[i]['text'].split()
elif granularity == 'chunk':
# Split on space after punctuation
split_text = re.split(
r'(?<=[.!?,-;])\s+', parsed_transcript[i]['text'])
if len(split_text) == 1:
split_on_whitespace = parsed_transcript[i]['text'].split()
if len(split_on_whitespace) >= 8: # Too many words
# Rather split on whitespace instead of punctuation
split_text = split_on_whitespace
else:
word_level = True
else:
raise ValueError('Unknown granularity')
segment_end = parsed_transcript[i]['end']
if i < len(parsed_transcript) - 1:
segment_end = min(segment_end, parsed_transcript[i+1]['start'])
segment_duration = segment_end - parsed_transcript[i]['start']
num_chars_in_text = sum(map(len, split_text))
num_char_count = 0
current_offset = 0
for s in split_text:
num_char_count += len(s)
next_offset = (num_char_count/num_chars_in_text) * segment_duration
word_start = round(
parsed_transcript[i]['start'] + current_offset, NUM_DECIMALS)
word_end = round(
parsed_transcript[i]['start'] + next_offset, NUM_DECIMALS)
# Make the reasonable assumption that min wps is 1.5
final_parsed_transcript.append({
'text': s,
'start': word_start,
'end': min(word_end, word_start + 1.5) if word_level else word_end
})
current_offset = next_offset
return final_parsed_transcript
def list_transcripts(video_id):
try:
return youtube_transcript_api2.YouTubeTranscriptApi.list_transcripts(video_id)
except json.decoder.JSONDecodeError:
return None
WORDS_TO_REMOVE = [
'[Music]'
'[Applause]'
'[Laughter]'
]
def get_words(video_id, transcript_type='auto', fallback='manual', filter_words_to_remove=True, granularity='word'):
"""Get parsed video transcript with caching system
returns None if not processed yet and process is False
"""
raw_transcript_json = None
try:
transcript_list = list_transcripts(video_id)
if transcript_list is not None:
if transcript_type == 'manual':
ts = transcript_list.find_manually_created_transcript(
LANGUAGE_PREFERENCE_LIST)
else:
ts = transcript_list.find_generated_transcript(
LANGUAGE_PREFERENCE_LIST)
raw_transcript = ts._http_client.get(
f'{ts._url}&fmt=json3').content
if raw_transcript:
raw_transcript_json = json.loads(raw_transcript)
except (youtube_transcript_api2.TooManyRequests, youtube_transcript_api2.YouTubeRequestFailed):
raise # Cannot recover from these errors and do not mark as empty transcript
except requests.exceptions.RequestException: # Can recover
return get_words(video_id, transcript_type, fallback, granularity)
except youtube_transcript_api2.CouldNotRetrieveTranscript: # Retrying won't solve
pass # Mark as empty transcript
except json.decoder.JSONDecodeError:
return get_words(video_id, transcript_type, fallback, granularity)
if not raw_transcript_json and fallback is not None:
return get_words(video_id, transcript_type=fallback, fallback=None, granularity=granularity)
if raw_transcript_json:
processed_transcript = parse_transcript_json(
raw_transcript_json, granularity)
if filter_words_to_remove:
processed_transcript = list(
filter(lambda x: x['text'] not in WORDS_TO_REMOVE, processed_transcript))
else:
processed_transcript = raw_transcript_json # Either None or []
return processed_transcript
def word_start(word):
return word['start']
def word_end(word):
return word.get('end', word['start'])
def extract_segment(words, start, end, map_function=None):
"""Extracts all words with time in [start, end]"""
a = max(binary_search_below(words, 0, len(words), start), 0)
b = min(binary_search_above(words, -1, len(words) - 1, end) + 1, len(words))
to_transform = map_function is not None and callable(map_function)
return [
map_function(words[i]) if to_transform else words[i] for i in range(a, b)
]
def avg(*items):
return sum(items)/len(items)
def binary_search_below(transcript, start_index, end_index, time):
if start_index >= end_index:
return end_index
middle_index = (start_index + end_index) // 2
middle = transcript[middle_index]
middle_time = avg(word_start(middle), word_end(middle))
if time <= middle_time:
return binary_search_below(transcript, start_index, middle_index, time)
else:
return binary_search_below(transcript, middle_index + 1, end_index, time)
def binary_search_above(transcript, start_index, end_index, time):
if start_index >= end_index:
return end_index
middle_index = (start_index + end_index + 1) // 2
middle = transcript[middle_index]
middle_time = avg(word_start(middle), word_end(middle))
if time >= middle_time:
return binary_search_above(transcript, middle_index, end_index, time)
else:
return binary_search_above(transcript, start_index, middle_index - 1, time)
class SponsorBlockClassificationPipeline(TextClassificationPipeline):
def __init__(self, model, tokenizer):
super().__init__(model=model, tokenizer=tokenizer, return_all_scores=True)
def preprocess(self, video, **tokenizer_kwargs):
words = get_words(video['video_id'])
segment_words = extract_segment(words, video['start'], video['end'])
text = ' '.join(x['text'] for x in segment_words)
model_inputs = self.tokenizer(
text, return_tensors=self.framework, **tokenizer_kwargs)
return {'video': video, 'model_inputs': model_inputs}
def _forward(self, data):
model_outputs = self.model(**data['model_inputs'])
return {'video': data['video'], 'model_outputs': model_outputs}
def postprocess(self, data, function_to_apply=None, return_all_scores=False):
model_outputs = data['model_outputs']
results = super().postprocess(model_outputs, function_to_apply, return_all_scores)
for result in results:
result['label'] = CATEGORIES[result['label']]
return {**data['video'], 'result': results}
# model_id = "Xenova/sponsorblock-classifier-v2"
# model = AutoModelForSequenceClassification.from_pretrained(model_id)
# tokenizer = AutoTokenizer.from_pretrained(model_id)
# pl = SponsorBlockClassificationPipeline(model=model, tokenizer=tokenizer)
# data = [{
# 'video_id': 'pqh4LfPeCYs',
# 'start': 835.933,
# 'end': 927.581,
# 'category': 'sponsor'
# }]
# print(pl(data))
class PreTrainedPipeline():
def __init__(self, path: str):
# load the model
self.model = AutoModelForSequenceClassification.from_pretrained(path)
self.tokenizer = AutoTokenizer.from_pretrained(path)
self.pipeline = SponsorBlockClassificationPipeline(
model=self.model, tokenizer=self.tokenizer)
def __call__(self, inputs) -> List[Dict[str, Any]]:
return self.pipeline(inputs)