Joshua Lochner
commited on
Commit
•
aacb405
1
Parent(s):
f7b6109
Update pipeline.py
Browse files- pipeline.py +2 -316
pipeline.py
CHANGED
@@ -1,13 +1,3 @@
|
|
1 |
-
import youtube_transcript_api2
|
2 |
-
import json
|
3 |
-
import re
|
4 |
-
import requests
|
5 |
-
from transformers import (
|
6 |
-
AutoModelForSequenceClassification,
|
7 |
-
AutoTokenizer,
|
8 |
-
TextClassificationPipeline,
|
9 |
-
)
|
10 |
-
from typing import Any, Dict, List
|
11 |
import json
|
12 |
from typing import Any, Dict, List
|
13 |
|
@@ -18,319 +8,16 @@ import io
|
|
18 |
import os
|
19 |
import numpy as np
|
20 |
from PIL import Image
|
21 |
-
CATEGORIES = [None, 'SPONSOR', 'SELFPROMO', 'INTERACTION']
|
22 |
-
|
23 |
-
PROFANITY_RAW = '[ __ ]' # How YouTube transcribes profanity
|
24 |
-
PROFANITY_CONVERTED = '*****' # Safer version for tokenizing
|
25 |
-
|
26 |
-
NUM_DECIMALS = 3
|
27 |
-
|
28 |
-
# https://www.fincher.org/Utilities/CountryLanguageList.shtml
|
29 |
-
# https://lingohub.com/developers/supported-locales/language-designators-with-regions
|
30 |
-
LANGUAGE_PREFERENCE_LIST = ['en-GB', 'en-US', 'en-CA', 'en-AU', 'en-NZ', 'en-ZA',
|
31 |
-
'en-IE', 'en-IN', 'en-JM', 'en-BZ', 'en-TT', 'en-PH', 'en-ZW',
|
32 |
-
'en']
|
33 |
-
|
34 |
-
|
35 |
-
def parse_transcript_json(json_data, granularity):
|
36 |
-
assert json_data['wireMagic'] == 'pb3'
|
37 |
-
|
38 |
-
assert granularity in ('word', 'chunk')
|
39 |
-
|
40 |
-
# TODO remove bracketed words?
|
41 |
-
# (kiss smacks)
|
42 |
-
# (upbeat music)
|
43 |
-
# [text goes here]
|
44 |
-
|
45 |
-
# Some manual transcripts aren't that well formatted... but do have punctuation
|
46 |
-
# https://www.youtube.com/watch?v=LR9FtWVjk2c
|
47 |
-
|
48 |
-
parsed_transcript = []
|
49 |
-
|
50 |
-
events = json_data['events']
|
51 |
-
|
52 |
-
for event_index, event in enumerate(events):
|
53 |
-
segments = event.get('segs')
|
54 |
-
if not segments:
|
55 |
-
continue
|
56 |
-
|
57 |
-
# This value is known (when phrase appears on screen)
|
58 |
-
start_ms = event['tStartMs']
|
59 |
-
total_characters = 0
|
60 |
-
|
61 |
-
new_segments = []
|
62 |
-
for seg in segments:
|
63 |
-
# Replace \n, \t, etc. with space
|
64 |
-
text = ' '.join(seg['utf8'].split())
|
65 |
-
|
66 |
-
# Remove zero-width spaces and strip trailing and leading whitespace
|
67 |
-
text = text.replace('\u200b', '').replace('\u200c', '').replace(
|
68 |
-
'\u200d', '').replace('\ufeff', '').strip()
|
69 |
-
|
70 |
-
# Alternatively,
|
71 |
-
# text = text.encode('ascii', 'ignore').decode()
|
72 |
-
|
73 |
-
# Needed for auto-generated transcripts
|
74 |
-
text = text.replace(PROFANITY_RAW, PROFANITY_CONVERTED)
|
75 |
-
|
76 |
-
if not text:
|
77 |
-
continue
|
78 |
-
|
79 |
-
offset_ms = seg.get('tOffsetMs', 0)
|
80 |
-
|
81 |
-
new_segments.append({
|
82 |
-
'text': text,
|
83 |
-
'start': round((start_ms + offset_ms)/1000, NUM_DECIMALS)
|
84 |
-
})
|
85 |
-
|
86 |
-
total_characters += len(text)
|
87 |
-
|
88 |
-
if not new_segments:
|
89 |
-
continue
|
90 |
-
|
91 |
-
if event_index < len(events) - 1:
|
92 |
-
next_start_ms = events[event_index + 1]['tStartMs']
|
93 |
-
total_event_duration_ms = min(
|
94 |
-
event.get('dDurationMs', float('inf')), next_start_ms - start_ms)
|
95 |
-
else:
|
96 |
-
total_event_duration_ms = event.get('dDurationMs', 0)
|
97 |
-
|
98 |
-
# Ensure duration is non-negative
|
99 |
-
total_event_duration_ms = max(total_event_duration_ms, 0)
|
100 |
-
|
101 |
-
avg_seconds_per_character = (
|
102 |
-
total_event_duration_ms/total_characters)/1000
|
103 |
-
|
104 |
-
num_char_count = 0
|
105 |
-
for seg_index, seg in enumerate(new_segments):
|
106 |
-
num_char_count += len(seg['text'])
|
107 |
-
|
108 |
-
# Estimate segment end
|
109 |
-
seg_end = seg['start'] + \
|
110 |
-
(num_char_count * avg_seconds_per_character)
|
111 |
-
|
112 |
-
if seg_index < len(new_segments) - 1:
|
113 |
-
# Do not allow longer than next
|
114 |
-
seg_end = min(seg_end, new_segments[seg_index+1]['start'])
|
115 |
-
|
116 |
-
seg['end'] = round(seg_end, NUM_DECIMALS)
|
117 |
-
parsed_transcript.append(seg)
|
118 |
-
|
119 |
-
final_parsed_transcript = []
|
120 |
-
for i in range(len(parsed_transcript)):
|
121 |
-
|
122 |
-
word_level = granularity == 'word'
|
123 |
-
if word_level:
|
124 |
-
split_text = parsed_transcript[i]['text'].split()
|
125 |
-
elif granularity == 'chunk':
|
126 |
-
# Split on space after punctuation
|
127 |
-
split_text = re.split(
|
128 |
-
r'(?<=[.!?,-;])\s+', parsed_transcript[i]['text'])
|
129 |
-
if len(split_text) == 1:
|
130 |
-
split_on_whitespace = parsed_transcript[i]['text'].split()
|
131 |
-
|
132 |
-
if len(split_on_whitespace) >= 8: # Too many words
|
133 |
-
# Rather split on whitespace instead of punctuation
|
134 |
-
split_text = split_on_whitespace
|
135 |
-
else:
|
136 |
-
word_level = True
|
137 |
-
else:
|
138 |
-
raise ValueError('Unknown granularity')
|
139 |
-
|
140 |
-
segment_end = parsed_transcript[i]['end']
|
141 |
-
if i < len(parsed_transcript) - 1:
|
142 |
-
segment_end = min(segment_end, parsed_transcript[i+1]['start'])
|
143 |
-
|
144 |
-
segment_duration = segment_end - parsed_transcript[i]['start']
|
145 |
-
|
146 |
-
num_chars_in_text = sum(map(len, split_text))
|
147 |
-
|
148 |
-
num_char_count = 0
|
149 |
-
current_offset = 0
|
150 |
-
for s in split_text:
|
151 |
-
num_char_count += len(s)
|
152 |
-
|
153 |
-
next_offset = (num_char_count/num_chars_in_text) * segment_duration
|
154 |
-
|
155 |
-
word_start = round(
|
156 |
-
parsed_transcript[i]['start'] + current_offset, NUM_DECIMALS)
|
157 |
-
word_end = round(
|
158 |
-
parsed_transcript[i]['start'] + next_offset, NUM_DECIMALS)
|
159 |
-
|
160 |
-
# Make the reasonable assumption that min wps is 1.5
|
161 |
-
final_parsed_transcript.append({
|
162 |
-
'text': s,
|
163 |
-
'start': word_start,
|
164 |
-
'end': min(word_end, word_start + 1.5) if word_level else word_end
|
165 |
-
})
|
166 |
-
current_offset = next_offset
|
167 |
-
|
168 |
-
return final_parsed_transcript
|
169 |
-
|
170 |
|
171 |
-
def list_transcripts(video_id):
|
172 |
-
try:
|
173 |
-
return youtube_transcript_api2.YouTubeTranscriptApi.list_transcripts(video_id)
|
174 |
-
except json.decoder.JSONDecodeError:
|
175 |
-
return None
|
176 |
|
177 |
|
178 |
-
WORDS_TO_REMOVE = [
|
179 |
-
'[Music]'
|
180 |
-
'[Applause]'
|
181 |
-
'[Laughter]'
|
182 |
-
]
|
183 |
-
|
184 |
-
|
185 |
-
def get_words(video_id, transcript_type='auto', fallback='manual', filter_words_to_remove=True, granularity='word'):
|
186 |
-
"""Get parsed video transcript with caching system
|
187 |
-
returns None if not processed yet and process is False
|
188 |
-
"""
|
189 |
-
|
190 |
-
raw_transcript_json = None
|
191 |
-
try:
|
192 |
-
transcript_list = list_transcripts(video_id)
|
193 |
-
|
194 |
-
if transcript_list is not None:
|
195 |
-
if transcript_type == 'manual':
|
196 |
-
ts = transcript_list.find_manually_created_transcript(
|
197 |
-
LANGUAGE_PREFERENCE_LIST)
|
198 |
-
else:
|
199 |
-
ts = transcript_list.find_generated_transcript(
|
200 |
-
LANGUAGE_PREFERENCE_LIST)
|
201 |
-
raw_transcript = ts._http_client.get(
|
202 |
-
f'{ts._url}&fmt=json3').content
|
203 |
-
if raw_transcript:
|
204 |
-
raw_transcript_json = json.loads(raw_transcript)
|
205 |
-
|
206 |
-
except (youtube_transcript_api2.TooManyRequests, youtube_transcript_api2.YouTubeRequestFailed):
|
207 |
-
raise # Cannot recover from these errors and do not mark as empty transcript
|
208 |
-
|
209 |
-
except requests.exceptions.RequestException: # Can recover
|
210 |
-
return get_words(video_id, transcript_type, fallback, granularity)
|
211 |
-
|
212 |
-
except youtube_transcript_api2.CouldNotRetrieveTranscript: # Retrying won't solve
|
213 |
-
pass # Mark as empty transcript
|
214 |
-
|
215 |
-
except json.decoder.JSONDecodeError:
|
216 |
-
return get_words(video_id, transcript_type, fallback, granularity)
|
217 |
-
|
218 |
-
if not raw_transcript_json and fallback is not None:
|
219 |
-
return get_words(video_id, transcript_type=fallback, fallback=None, granularity=granularity)
|
220 |
-
|
221 |
-
if raw_transcript_json:
|
222 |
-
processed_transcript = parse_transcript_json(
|
223 |
-
raw_transcript_json, granularity)
|
224 |
-
if filter_words_to_remove:
|
225 |
-
processed_transcript = list(
|
226 |
-
filter(lambda x: x['text'] not in WORDS_TO_REMOVE, processed_transcript))
|
227 |
-
else:
|
228 |
-
processed_transcript = raw_transcript_json # Either None or []
|
229 |
-
|
230 |
-
return processed_transcript
|
231 |
-
|
232 |
-
|
233 |
-
def word_start(word):
|
234 |
-
return word['start']
|
235 |
-
|
236 |
-
|
237 |
-
def word_end(word):
|
238 |
-
return word.get('end', word['start'])
|
239 |
-
|
240 |
-
|
241 |
-
def extract_segment(words, start, end, map_function=None):
|
242 |
-
"""Extracts all words with time in [start, end]"""
|
243 |
-
|
244 |
-
a = max(binary_search_below(words, 0, len(words), start), 0)
|
245 |
-
b = min(binary_search_above(words, -1, len(words) - 1, end) + 1, len(words))
|
246 |
-
|
247 |
-
to_transform = map_function is not None and callable(map_function)
|
248 |
-
|
249 |
-
return [
|
250 |
-
map_function(words[i]) if to_transform else words[i] for i in range(a, b)
|
251 |
-
]
|
252 |
-
|
253 |
-
|
254 |
-
def avg(*items):
|
255 |
-
return sum(items)/len(items)
|
256 |
-
|
257 |
-
|
258 |
-
def binary_search_below(transcript, start_index, end_index, time):
|
259 |
-
if start_index >= end_index:
|
260 |
-
return end_index
|
261 |
-
|
262 |
-
middle_index = (start_index + end_index) // 2
|
263 |
-
middle = transcript[middle_index]
|
264 |
-
middle_time = avg(word_start(middle), word_end(middle))
|
265 |
-
|
266 |
-
if time <= middle_time:
|
267 |
-
return binary_search_below(transcript, start_index, middle_index, time)
|
268 |
-
else:
|
269 |
-
return binary_search_below(transcript, middle_index + 1, end_index, time)
|
270 |
-
|
271 |
-
|
272 |
-
def binary_search_above(transcript, start_index, end_index, time):
|
273 |
-
if start_index >= end_index:
|
274 |
-
return end_index
|
275 |
-
|
276 |
-
middle_index = (start_index + end_index + 1) // 2
|
277 |
-
middle = transcript[middle_index]
|
278 |
-
middle_time = avg(word_start(middle), word_end(middle))
|
279 |
-
|
280 |
-
if time >= middle_time:
|
281 |
-
return binary_search_above(transcript, middle_index, end_index, time)
|
282 |
-
else:
|
283 |
-
return binary_search_above(transcript, start_index, middle_index - 1, time)
|
284 |
-
|
285 |
-
|
286 |
-
class SponsorBlockClassificationPipeline(TextClassificationPipeline):
|
287 |
-
def __init__(self, model, tokenizer):
|
288 |
-
super().__init__(model=model, tokenizer=tokenizer, return_all_scores=True)
|
289 |
-
|
290 |
-
def preprocess(self, video, **tokenizer_kwargs):
|
291 |
-
|
292 |
-
words = get_words(video['video_id'])
|
293 |
-
segment_words = extract_segment(words, video['start'], video['end'])
|
294 |
-
text = ' '.join(x['text'] for x in segment_words)
|
295 |
-
|
296 |
-
model_inputs = self.tokenizer(
|
297 |
-
text, return_tensors=self.framework, **tokenizer_kwargs)
|
298 |
-
return {'video': video, 'model_inputs': model_inputs}
|
299 |
-
|
300 |
-
def _forward(self, data):
|
301 |
-
model_outputs = self.model(**data['model_inputs'])
|
302 |
-
return {'video': data['video'], 'model_outputs': model_outputs}
|
303 |
-
|
304 |
-
def postprocess(self, data, function_to_apply=None, return_all_scores=False):
|
305 |
-
model_outputs = data['model_outputs']
|
306 |
-
|
307 |
-
results = super().postprocess(model_outputs, function_to_apply, return_all_scores)
|
308 |
-
|
309 |
-
for result in results:
|
310 |
-
result['label_text'] = CATEGORIES[result['label']]
|
311 |
-
|
312 |
-
return results # {**data['video'], 'result': results}
|
313 |
-
|
314 |
class PreTrainedPipeline():
|
315 |
def __init__(self, path: str):
|
316 |
# load the model
|
317 |
-
self.model =
|
318 |
-
self.tokenizer = AutoTokenizer.from_pretrained(path)
|
319 |
-
self.pipeline = SponsorBlockClassificationPipeline(
|
320 |
-
model=self.model, tokenizer=self.tokenizer)
|
321 |
|
322 |
-
# def __call__(self, inputs: str) -> List[Dict[str, Any]]:
|
323 |
-
# json_data = json.loads(inputs)
|
324 |
-
# return self.pipeline(json_data)
|
325 |
def __call__(self, inputs: "Image.Image")-> List[Dict[str, Any]]:
|
326 |
-
|
327 |
-
'video_id': 'pqh4LfPeCYs',
|
328 |
-
'start': 835.933,
|
329 |
-
'end': 927.581,
|
330 |
-
'category': 'sponsor'
|
331 |
-
}]
|
332 |
-
results = self.pipeline(data)
|
333 |
-
|
334 |
# convert img to numpy array, resize and normalize to make the prediction
|
335 |
img = np.array(inputs)
|
336 |
|
@@ -387,6 +74,5 @@ class PreTrainedPipeline():
|
|
387 |
"label": f"LABEL_{cls}",
|
388 |
"mask": mask_codes[f"mask_{cls}"],
|
389 |
"score": 1.0,
|
390 |
-
# "q": results
|
391 |
})
|
392 |
return labels
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import json
|
2 |
from typing import Any, Dict, List
|
3 |
|
|
|
8 |
import os
|
9 |
import numpy as np
|
10 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
class PreTrainedPipeline():
|
15 |
def __init__(self, path: str):
|
16 |
# load the model
|
17 |
+
self.model = keras.models.load_model(os.path.join(path, "tf_model.h5"))
|
|
|
|
|
|
|
18 |
|
|
|
|
|
|
|
19 |
def __call__(self, inputs: "Image.Image")-> List[Dict[str, Any]]:
|
20 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
# convert img to numpy array, resize and normalize to make the prediction
|
22 |
img = np.array(inputs)
|
23 |
|
|
|
74 |
"label": f"LABEL_{cls}",
|
75 |
"mask": mask_codes[f"mask_{cls}"],
|
76 |
"score": 1.0,
|
|
|
77 |
})
|
78 |
return labels
|