File size: 1,493 Bytes
d40ac28
e1675c2
3c624b3
 
d40ac28
b34e4c9
 
 
 
 
6c5afae
b34e4c9
 
 
 
 
 
 
 
 
 
 
7ebde84
6c5afae
 
b34e4c9
6c5afae
 
b34e4c9
6c5afae
 
 
 
 
7ebde84
b34e4c9
7ebde84
 
b34e4c9
7ebde84
 
6c5afae
 
 
 
7ebde84
3c624b3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
---
license: apache-2.0
tags:
- biology
---

# Model Card for Model ID

<!-- Provide a quick summary of what the model is/does. -->

This model is optimized for plant science by continuing pertaining on over 1.5 million plant science academic articles based on LLaMa-2.


- **Developed by:** [UCSB]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [LLaMa-2]

- **Paper [optional]:** [https://arxiv.org/pdf/2401.01600.pdf]
- **Demo [optional]:** [More Information Needed]

## How to Get Started with the Model
```python
from transformers import LlamaTokenizer, LlamaForCausalLM
import torch

tokenizer = LlamaTokenizer.from_pretrained("Xianjun/PLLaMa-7b-base")
model = LlamaForCausalLM.from_pretrained("Xianjun/PLLaMa-7b-base").half().to("cuda")

instruction = "How to ..."
batch = tokenizer(instruction, return_tensors="pt", add_special_tokens=False).to("cuda")
with torch.no_grad():
    output = model.generate(**batch, max_new_tokens=512, temperature=0.7, do_sample=True)
    response = tokenizer.decode(output[0], skip_special_tokens=True)
```

## Citation
If you find PLLaMa useful in your research, please cite the following paper:

```latex
@inproceedings{Yang2024PLLaMaAO,
  title={PLLaMa: An Open-source Large Language Model for Plant Science},
  author={Xianjun Yang and Junfeng Gao and Wenxin Xue and Erik Alexandersson},
  year={2024},
  url={https://api.semanticscholar.org/CorpusID:266741610}
}
```