|
|
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.modeling_rope_utils import rope_config_validation |
|
from transformers.utils import logging |
|
from typing_extensions import Self |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class XmodelConfig(PretrainedConfig): |
|
model_type = "xmodel" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
def __init__( |
|
self, |
|
vocab_size=32000, |
|
hidden_size=1536, |
|
intermediate_size=4096, |
|
num_hidden_layers=48, |
|
num_attention_heads=24, |
|
num_key_value_heads=8, |
|
hidden_act="silu", |
|
max_position_embeddings=131072, |
|
initializer_range=0.1, |
|
rms_norm_eps=1e-5, |
|
use_cache=True, |
|
pad_token_id=None, |
|
bos_token_id=1, |
|
eos_token_id=2, |
|
pretraining_tp=1, |
|
tie_word_embeddings=True, |
|
rope_theta=500000.0, |
|
rope_scaling=None, |
|
attention_bias=False, |
|
attention_dropout=0.0, |
|
mlp_bias=False, |
|
hidden_act_param=0.03, |
|
scale_emb=12, |
|
dim_model_base=256, |
|
scale_depth=1.4, |
|
**kwargs, |
|
): |
|
self.vocab_size = vocab_size |
|
self.max_position_embeddings = max_position_embeddings |
|
self.hidden_size = hidden_size |
|
|
|
if intermediate_size is None: |
|
self.intermediate_size = find_multiple(int(8 * hidden_size / 3), 256) |
|
else: |
|
self.intermediate_size = intermediate_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
|
|
|
|
if num_key_value_heads is None: |
|
num_key_value_heads = num_attention_heads |
|
|
|
self.num_key_value_heads = num_key_value_heads |
|
self.hidden_act = hidden_act |
|
self.hidden_act_param = hidden_act_param |
|
self.initializer_range = initializer_range |
|
self.rms_norm_eps = rms_norm_eps |
|
self.pretraining_tp = pretraining_tp |
|
self.use_cache = use_cache |
|
self.rope_theta = rope_theta |
|
self.rope_scaling = rope_scaling |
|
self.attention_bias = attention_bias |
|
self.attention_dropout = attention_dropout |
|
self.mlp_bias = mlp_bias |
|
self.scale_emb = scale_emb |
|
self.dim_model_base = dim_model_base |
|
self.scale_depth = scale_depth |
|
|
|
self.auto_map = { |
|
"AutoConfig": "configuration_xmodel.XmodelConfig", |
|
"AutoModelForCausalLM": "modeling_xmodel.XmodelForCausalLM" |
|
} |
|
|
|
|
|
|
|
if self.rope_scaling is not None and "type" in self.rope_scaling: |
|
self.rope_scaling["rope_type"] = self.rope_scaling["type"] |
|
rope_config_validation(self) |
|
|
|
super().__init__( |
|
pad_token_id=pad_token_id, |
|
bos_token_id=bos_token_id, |
|
eos_token_id=eos_token_id, |
|
tie_word_embeddings=tie_word_embeddings, |
|
**kwargs, |
|
) |
|
|
|
@classmethod |
|
def from_name(cls, name: str) -> Self: |
|
return cls(**xmodel_configs[name]) |
|
|
|
|
|
xmodel_configs = { |
|
"nano": dict(num_hidden_layers=8, |
|
num_attention_heads=4, |
|
num_key_value_heads=1, |
|
hidden_size=256, |
|
tie_word_embeddings=True, |
|
intermediate_size=640), |
|
|
|
"nano_old": dict(num_hidden_layers=6, |
|
num_attention_heads=6, |
|
num_key_value_heads=1, |
|
hidden_size=192, |
|
tie_word_embeddings=False), |
|
|
|
"micro": dict(num_hidden_layers=12, |
|
num_attention_heads=6, |
|
num_key_value_heads=1, |
|
hidden_size=384, |
|
tie_word_embeddings=True, |
|
intermediate_size=960), |
|
|
|
"micro_old": dict(num_hidden_layers=6, |
|
num_attention_heads=6, |
|
num_key_value_heads=1, |
|
hidden_size=384, |
|
tie_word_embeddings=False), |
|
|
|
"tiny": dict(num_hidden_layers=18, |
|
num_attention_heads=8, |
|
num_key_value_heads=4, |
|
hidden_size=512, |
|
tie_word_embeddings=True, |
|
intermediate_size=1280), |
|
|
|
"tiny_old": dict(num_hidden_layers=8, |
|
num_attention_heads=8, |
|
num_key_value_heads=2, |
|
hidden_size=512, |
|
tie_word_embeddings=False), |
|
|
|
|
|
"small": dict(num_hidden_layers=30, |
|
num_attention_heads=9, |
|
num_key_value_heads=3, |
|
hidden_size=576, |
|
tie_word_embeddings=True, |
|
intermediate_size=1440), |
|
|
|
"small_old": dict(num_hidden_layers=12, |
|
num_attention_heads=12, |
|
num_key_value_heads=3, |
|
hidden_size=768, |
|
tie_word_embeddings=False), |
|
|
|
|
|
"medium": dict(num_hidden_layers=32, |
|
num_attention_heads=15, |
|
num_key_value_heads=5, |
|
hidden_size=960, |
|
tie_word_embeddings=True, |
|
intermediate_size=2400), |
|
|
|
"medium_old": dict(num_hidden_layers=24, |
|
num_attention_heads=16, |
|
num_key_value_heads=4, |
|
hidden_size=1024, |
|
tie_word_embeddings=False), |
|
|
|
|
|
"xl": dict(num_hidden_layers=48, |
|
num_attention_heads=24, |
|
num_key_value_heads=8, |
|
hidden_size=1536, |
|
tie_word_embeddings=True, |
|
intermediate_size=3840), |
|
|
|
"xl_old": dict(num_hidden_layers=24, |
|
num_attention_heads=32, |
|
num_key_value_heads=4, |
|
hidden_size=2048, |
|
tie_word_embeddings=False), |
|
|
|
} |
|
|
|
|
|
def find_multiple(n: int, k: int) -> int: |
|
if n % k == 0: |
|
return n |
|
return n + k - (n % k) |
|
|