# Copyright (c) 2023 XiaoDuo AI. All rights reserved. from transformers.configuration_utils import PretrainedConfig from transformers.modeling_rope_utils import rope_config_validation from transformers.utils import logging from typing_extensions import Self logger = logging.get_logger(__name__) class XmodelConfig(PretrainedConfig): model_type = "xmodel" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=32000, hidden_size=1536, intermediate_size=4096, num_hidden_layers=48, num_attention_heads=24, num_key_value_heads=8, hidden_act="silu", max_position_embeddings=131072, initializer_range=0.1, rms_norm_eps=1e-5, use_cache=True, pad_token_id=None, bos_token_id=1, eos_token_id=2, pretraining_tp=1, tie_word_embeddings=True, rope_theta=500000.0, rope_scaling=None, attention_bias=False, attention_dropout=0.0, mlp_bias=False, hidden_act_param=0.03, scale_emb=12, dim_model_base=256, scale_depth=1.4, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size # self.intermediate_size = intermediate_size if intermediate_size is None: self.intermediate_size = find_multiple(int(8 * hidden_size / 3), 256) else: self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads # for backward compatibility if num_key_value_heads is None: num_key_value_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.hidden_act_param = hidden_act_param self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.pretraining_tp = pretraining_tp self.use_cache = use_cache self.rope_theta = rope_theta self.rope_scaling = rope_scaling self.attention_bias = attention_bias self.attention_dropout = attention_dropout self.mlp_bias = mlp_bias self.scale_emb = scale_emb self.dim_model_base = dim_model_base self.scale_depth = scale_depth self.auto_map = { "AutoConfig": "configuration_xmodel.XmodelConfig", "AutoModelForCausalLM": "modeling_xmodel.XmodelForCausalLM" } # Validate the correctness of rotary position embeddings parameters # BC: if there is a 'type' field, move it to 'rope_type'. if self.rope_scaling is not None and "type" in self.rope_scaling: self.rope_scaling["rope_type"] = self.rope_scaling["type"] rope_config_validation(self) super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) @classmethod def from_name(cls, name: str) -> Self: return cls(**xmodel_configs[name]) xmodel_configs = { "nano": dict(num_hidden_layers=8, num_attention_heads=4, num_key_value_heads=1, hidden_size=256, tie_word_embeddings=True, intermediate_size=640), "nano_old": dict(num_hidden_layers=6, num_attention_heads=6, num_key_value_heads=1, hidden_size=192, tie_word_embeddings=False), "micro": dict(num_hidden_layers=12, num_attention_heads=6, num_key_value_heads=1, hidden_size=384, tie_word_embeddings=True, intermediate_size=960), "micro_old": dict(num_hidden_layers=6, num_attention_heads=6, num_key_value_heads=1, hidden_size=384, tie_word_embeddings=False), "tiny": dict(num_hidden_layers=18, num_attention_heads=8, num_key_value_heads=4, hidden_size=512, tie_word_embeddings=True, intermediate_size=1280), "tiny_old": dict(num_hidden_layers=8, num_attention_heads=8, num_key_value_heads=2, hidden_size=512, tie_word_embeddings=False), # GPT-1 & Bert-Base "small": dict(num_hidden_layers=30, num_attention_heads=9, num_key_value_heads=3, hidden_size=576, tie_word_embeddings=True, intermediate_size=1440), "small_old": dict(num_hidden_layers=12, num_attention_heads=12, num_key_value_heads=3, hidden_size=768, tie_word_embeddings=False), # Bert-Large "medium": dict(num_hidden_layers=32, num_attention_heads=15, num_key_value_heads=5, hidden_size=960, tie_word_embeddings=True, intermediate_size=2400), "medium_old": dict(num_hidden_layers=24, num_attention_heads=16, num_key_value_heads=4, hidden_size=1024, tie_word_embeddings=False), # GPT-2 "xl": dict(num_hidden_layers=48, num_attention_heads=24, num_key_value_heads=8, hidden_size=1536, tie_word_embeddings=True, intermediate_size=3840), # GPT-2 "xl_old": dict(num_hidden_layers=24, num_attention_heads=32, num_key_value_heads=4, hidden_size=2048, tie_word_embeddings=False), } def find_multiple(n: int, k: int) -> int: if n % k == 0: return n return n + k - (n % k)