import os import torch import torch.nn as nn from transformers import CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig from transformers import ChineseCLIPVisionModel, ChineseCLIPImageProcessor, ChineseCLIPVisionConfig from transformers import SiglipVisionModel, SiglipImageProcessor, SiglipVisionConfig class CLIPVisionTower(nn.Module): def __init__(self, vision_tower, args, delay_load=False): super().__init__() self.is_loaded = False self.vision_tower_name = vision_tower self.select_layer = args.mm_vision_select_layer self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch') if not delay_load: self.load_model() else: self.cfg_only = CLIPVisionConfig.from_pretrained(self.vision_tower_name) self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name) # dummy-load def load_model(self): self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_tower_name) self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name) self.vision_tower.requires_grad_(False) self.is_loaded = True def load_image_processor(self): self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_tower_name) self.is_loaded = True def feature_select(self, image_forward_outs): image_features = image_forward_outs.hidden_states[self.select_layer] if self.select_feature == 'patch': image_features = image_features[:, 1:] elif self.select_feature == 'cls_patch': image_features = image_features else: raise ValueError(f'Unexpected select feature: {self.select_feature}') return image_features @torch.no_grad() def forward(self, images): if type(images) is list: image_features = [] for image in images: image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True) image_feature = self.feature_select(image_forward_out).to(image.dtype) image_features.append(image_feature) else: image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True) image_features = self.feature_select(image_forward_outs).to(images.dtype) return image_features @property def dummy_feature(self): return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) @property def dtype(self): return self.vision_tower.dtype @property def device(self): return self.vision_tower.device @property def config(self): if self.is_loaded: return self.vision_tower.config else: return self.cfg_only @property def hidden_size(self): if self.select_feature.startswith('mtcv'): num_select = int(self.select_feature.split('-')[-1]) return self.config.hidden_size * num_select return self.config.hidden_size @property def num_patches(self): return (self.config.image_size // self.config.patch_size) ** 2 class ChineseCLIPVisionTower(nn.Module): def __init__(self, vision_tower, args, delay_load=False): super().__init__() self.is_loaded = False self.vision_tower_name = vision_tower self.vision_tower = None self.select_layer = args.mm_vision_select_layer self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch') if not delay_load: self.load_model() elif getattr(args, 'unfreeze_mm_vision_tower', False): self.load_model() else: self.cfg_only = ChineseCLIPVisionConfig.from_pretrained(self.vision_tower_name) def load_model(self, device_map=None): if self.is_loaded: print('{} is already loaded, `load_model` called again, skipping.'.format(self.vision_tower_name)) return self.image_processor = ChineseCLIPImageProcessor.from_pretrained(self.vision_tower_name, crop_size={"height": 336, "width": 336}) # self.vision_tower = ChineseCLIPVisionModel.from_pretrained(self.vision_tower_name, device_map=device_map) self.vision_tower = ChineseCLIPVisionModel.from_pretrained(self.vision_tower_name).cuda() self.vision_tower.requires_grad_(False) self.is_loaded = True def load_image_processor(self): self.image_processor = ChineseCLIPImageProcessor.from_pretrained(self.vision_tower_name) self.is_loaded = True def feature_select(self, image_forward_outs): image_features = image_forward_outs.hidden_states[self.select_layer] if self.select_feature == 'patch': image_features = image_features[:, 1:] elif self.select_feature == 'cls_patch': image_features = image_features else: raise ValueError(f'Unexpected select feature: {self.select_feature}') return image_features @torch.no_grad() def forward(self, images): if type(images) is list: image_features = [] for image in images: image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True) image_feature = self.feature_select(image_forward_out).to(image.dtype) image_features.append(image_feature) else: image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True) image_features = self.feature_select(image_forward_outs).to(images.dtype) return image_features @property def dummy_feature(self): return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) @property def dtype(self): return self.vision_tower.dtype @property def device(self): return self.vision_tower.device @property def config(self): if self.is_loaded: return self.vision_tower.config else: return self.cfg_only @property def hidden_size(self): return self.config.hidden_size @property def num_patches_per_side(self): return self.config.image_size // self.config.patch_size @property def num_patches(self): return (self.config.image_size // self.config.patch_size) ** 2 class SiglipVisionTower(nn.Module): def __init__(self, vision_tower, args, delay_load=False): super().__init__() self.is_loaded = False self.vision_tower_name = vision_tower self.select_layer = args.mm_vision_select_layer self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch') if not delay_load: self.load_model() else: self.cfg_only = SiglipVisionConfig.from_pretrained(self.vision_tower_name) self.vision_tower = SiglipVisionModel.from_pretrained(self.vision_tower_name) # dummy-load def load_model(self): self.image_processor = SiglipImageProcessor.from_pretrained(self.vision_tower_name) self.vision_tower = SiglipVisionModel.from_pretrained(self.vision_tower_name) self.vision_tower.requires_grad_(False) self.is_loaded = True def load_image_processor(self): self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_tower_name) self.is_loaded = True def feature_select(self, image_forward_outs): image_features = image_forward_outs.hidden_states[self.select_layer] if self.select_feature == 'patch': image_features = image_features[:, 1:] elif self.select_feature == 'cls_patch': image_features = image_features else: raise ValueError(f'Unexpected select feature: {self.select_feature}') return image_features @torch.no_grad() def forward(self, images): if type(images) is list: image_features = [] for image in images: image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True) image_feature = self.feature_select(image_forward_out).to(image.dtype) image_features.append(image_feature) else: image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True) image_features = self.feature_select(image_forward_outs).to(images.dtype) return image_features @property def dummy_feature(self): return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) @property def dtype(self): return self.vision_tower.dtype @property def device(self): return self.vision_tower.device @property def config(self): if self.is_loaded: return self.vision_tower.config else: return self.cfg_only @property def hidden_size(self): if self.select_feature.startswith('mtcv'): num_select = int(self.select_feature.split('-')[-1]) return self.config.hidden_size * num_select return self.config.hidden_size @property def num_patches(self): return (self.config.image_size // self.config.patch_size) ** 2 def build_vision_tower(model_cfg, **kwargs): vision_tower = getattr(model_cfg, 'mm_vision_tower', getattr(model_cfg, 'vision_tower', None)) is_absolute_path_exists = os.path.exists(vision_tower) if is_absolute_path_exists or vision_tower.startswith("openai") or vision_tower.startswith("laion"): vision_tower_type = getattr(model_cfg, 'vision_tower_type', None) if vision_tower_type == "clip": return CLIPVisionTower(vision_tower, args=model_cfg, **kwargs) elif vision_tower_type == "chinese_clip": return ChineseCLIPVisionTower(vision_tower, args=model_cfg, **kwargs) elif vision_tower_type == "siglip": return SiglipVisionTower(vision_tower, args=model_cfg, **kwargs) raise ValueError(f'Unknown vision tower: {vision_tower}')