from typing import List, Optional, Tuple, Union import torch import torch.nn as nn from torch.nn import CrossEntropyLoss from transformers import AutoConfig, AutoModelForCausalLM from transformers.modeling_outputs import CausalLMOutputWithPast from xmodelvlm.model.xmodelvlm import XmodelVLMMetaModel, XmodelVLMMetaForCausalLM from .modeling_xmodel import XModelConfig, Model, XModelForCausalLM class XmodelVLMConfig(XModelConfig): model_type = "xmodelvlm" class XmodelLMModel(XmodelVLMMetaModel, Model): config_class = XmodelVLMConfig def __init__(self, config: XModelConfig): super(XmodelLMModel, self).__init__(config) class XmodelLMForCausalLM(XModelForCausalLM, XmodelVLMMetaForCausalLM): config_class = XmodelVLMConfig def __init__(self, config): super(XModelForCausalLM, self).__init__(config) self.model = XmodelLMModel(config) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.post_init() # Initialize weights and apply final processing def get_model(self): return self.model def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, images: Optional[torch.FloatTensor] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states) return_dict = return_dict if return_dict is not None else self.config.use_return_dict input_ids, attention_mask, past_key_values, inputs_embeds, labels = \ self.prepare_inputs_labels_for_multimodal(input_ids, attention_mask, past_key_values, labels, images) # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict ) hidden_states = outputs[0] logits = self.lm_head(hidden_states) loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model/pipeline parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs ): if past_key_values: input_ids = input_ids[:, -1:] # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "attention_mask": attention_mask, "images": kwargs.get("images", None), } ) return model_inputs AutoConfig.register("xmodelvlm", XmodelVLMConfig) AutoModelForCausalLM.register(XmodelVLMConfig, XmodelLMForCausalLM)