Xiaojie0903 commited on
Commit
47f7cde
1 Parent(s): ce787ef

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +105 -2
README.md CHANGED
@@ -6,5 +6,108 @@ language:
6
  - en
7
  metrics:
8
  - accuracy
9
- pipeline_tag: feature-extraction
10
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  - en
7
  metrics:
8
  - accuracy
9
+ pipeline_tag: image-classification
10
+ ---
11
+
12
+ # **GenView Pretrained Models**
13
+
14
+ ## Model Name
15
+ **GenView: Enhancing View Quality with Pretrained Generative Models**
16
+
17
+ ### Summary
18
+ This repository hosts pretrained models developed as part of the GenView framework, introduced in the ECCV 2024 paper *GenView: Enhancing View Quality with Pretrained Generative Model for Self-Supervised Learning*. These models are designed for visual representation tasks, including image classification, multimodal learning, and feature extraction. GenView leverages generative models to enhance self-supervised learning by improving view quality and diversity.
19
+
20
+ ---
21
+
22
+ ## Table of Contents
23
+ 1. [Model Details](#model-details)
24
+ 2. [Evaluation](#evaluation)
25
+ 3. [Citation](#citation)
26
+ 4. [How to Download the Model](#how-to-download-the-model)
27
+
28
+ ---
29
+
30
+ ## Model Details
31
+
32
+ ### **Model Description**
33
+ The GenView pretrained models include both convolutional architectures (e.g., ResNet50) and transformer-based architectures (e.g., ViT-B). These models utilize advanced self-supervised learning methods such as SimSiam, MoCo, and BYOL. By incorporating generative models for adaptive view generation, the framework delivers superior feature representations.
34
+
35
+ - **Developed by:** Xiaojie Li, Yibo Yang, Xiangtai Li, Jianlong Wu, Yue Yu, Bernard Ghanem, Min Zhang
36
+ - **Funded by:** Harbin Institute of Technology, Shenzhen; Peng Cheng Laboratory; KAUST; NTU
37
+ - **Shared by:** Xiaojie Li
38
+ - **Model type:** Self-supervised learning for vision tasks
39
+ - **Language:** Vision-focused (not language-specific)
40
+ - **License:** Apache 2.0
41
+
42
+ ### **Model Sources**
43
+ - **Hugging Face Repository:** [GenView Pretrained Models](https://huggingface.co/Xiaojie0903/genview_pretrained_models)
44
+ - **GitHub Repository:** [GenView Official Code](https://github.com/xiaojieli0903/genview/)
45
+ - **Paper:** [GenView: Enhancing View Quality with Pretrained Generative Model for Self-Supervised Learning (ECCV 2024)](https://arxiv.org/abs/2403.12003)
46
+
47
+ ---
48
+
49
+ ## Evaluation
50
+
51
+ ### **Testing Data**
52
+ Linear Probe evaluation was conducted using the ImageNet-1K dataset.
53
+
54
+ ### **Metrics**
55
+ The models were evaluated based on Top-1 accuracy.
56
+
57
+ ### **Results**
58
+
59
+ | Method | Backbone | Pretraining Epochs | Linear Probe Accuracy (%) |
60
+ |-------------------|--------------|---------------------|----------------------------|
61
+ | MoCo v2 + GenView| ResNet-50 | 200 | 70.0 |
62
+ | SwAV + GenView | ResNet-50 | 200 | 71.7 |
63
+ | SimSiam + GenView| ResNet-50 | 200 | 72.2 |
64
+ | BYOL + GenView | ResNet-50 | 200 | 73.2 |
65
+ | MoCo v3 + GenView| ResNet-50 | 100 | 72.7 |
66
+ | MoCo v3 + GenView| ResNet-50 | 300 | 74.8 |
67
+ | MoCo v3 + GenView| ViT-S | 300 | 74.5 |
68
+ | MoCo v3 + GenView| ViT-B | 300 | 77.8 |
69
+
70
+ ---
71
+
72
+ ## Citation
73
+
74
+ If you use these models, please cite the GenView paper:
75
+
76
+ ```bibtex
77
+ @inproceedings{li2023genview,
78
+ author={Li, Xiaojie and Yang, Yibo and Li, Xiangtai and Wu, Jianlong and Yu, Yue and Ghanem, Bernard and Zhang, Min},
79
+ title={GenView: Enhancing View Quality with Pretrained Generative Model for Self-Supervised Learning},
80
+ year={2024},
81
+ booktitle={Proceedings of the European Conference on Computer Vision},
82
+ pages={306--325},
83
+ publisher="Springer"
84
+ }
85
+ ```
86
+ ---
87
+ ## How to Download the Model
88
+
89
+ ### **Downloading Models**
90
+ To download models, use the following commands:
91
+
92
+ #### Option 1: `wget`
93
+ ```bash
94
+ # Replace {MODEL_FILE} with the specific model file name
95
+ wget https://huggingface.co/Xiaojie0903/genview_pretrained_models/resolve/main/{MODEL_FILE}
96
+ ```
97
+
98
+ Example:
99
+ ```bash
100
+ wget https://huggingface.co/Xiaojie0903/genview_pretrained_models/resolve/main/mocov3_resnet50_8xb512-amp-coslr-100e_in1k_genview.pth
101
+ ```
102
+
103
+ #### Option 2: Hugging Face Python API
104
+ ```python
105
+ from huggingface_hub import hf_hub_download
106
+
107
+ # Replace with your desired model file
108
+ file_path = hf_hub_download(
109
+ repo_id="Xiaojie0903/genview_pretrained_models",
110
+ filename="mocov3_resnet50_8xb512-amp-coslr-100e_in1k_genview.pth"
111
+ )
112
+ print(f"Model downloaded to {file_path}")
113
+ ```