Y-T-G commited on
Commit
45fb2c4
1 Parent(s): 2cb7eed

Initial model upload

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 255.01 +/- 20.99
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2176605310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f21766053a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2176605430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f21766054c0>", "_build": "<function ActorCriticPolicy._build at 0x7f2176605550>", "forward": "<function ActorCriticPolicy.forward at 0x7f21766055e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2176605670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2176605700>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2176605790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2176605820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f21766058b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2176605940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f21766018a0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678183970083999451, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFpotr3i8qM/Mwkgv563+L748g+9wFZZvgAAAAAAAAAAM1k/vGVfRz9cmJI8et2WvhUTib0tX/88AAAAAAAAAAAzres8j30RvOa7CLzzW5088vB1vQh3gj0AAIA/AACAP82SHr2vfGk90ASSvdDzIr5iVR292g19vQAAAAAAAAAArZQvvtnL/j45A5M+rP+WvvkW+jypGLC8AAAAAAAAAAAApjs9g25OPay9Br7PISy+4YI6vRwNNr0AAAAAAAAAADNp9DwfNbO5Hs2utp0YWrIq3/A7qzjNNQAAgD8AAIA/5heFvXZQSLyM74U7eYQqPIp/qL1HZRQ9AACAPwAAgD/mmAE9Eja7PNb4vT3J2ye+ustEPS7iuTwAAAAAAAAAAEDAkD4GM1Y/VcqkPiGd577iysA+5gE+PAAAAAAAAAAAs52ovRLM3D5eN5s9VIqavk4yA722BHs9AAAAAAAAAADNC5O8hZPuPFMWlj2fv2O+aCUCPQ1j1rsAAAAAAAAAAADLnTxQ+Jk/KhCPPTU02L447QA9A7EQPQAAAAAAAAAAoF9NvgK0Hj9HcAw+FtmDvh7en71iMps9AAAAAAAAAABAOdY9KUhNunjxODpOjq01fCCFOsubVrkAAAAAAACAPwDwTry5i7s/kO+EvdeY1rx/LkS9hAkDvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILekoB/MncUCUhpRSlIwBbJRNLQGMAXSUR0CYaAtQbdaddX2UKGgGaAloD0MIj41AvC74YkCUhpRSlGgVTegDaBZHQJhoNk3CKrJ1fZQoaAZoCWgPQwhJaMu5FF9uQJSGlFKUaBVN0AFoFkdAmGq668QI2XV9lChoBmgJaA9DCIL/rWQHLnBAlIaUUpRoFU1fAWgWR0CYhBJbt7a7dX2UKGgGaAloD0MIzXNEvkvUbECUhpRSlGgVTT0BaBZHQJiFLaPCEYh1fZQoaAZoCWgPQwjuX1lp0rxuQJSGlFKUaBVNRAFoFkdAmIVcxTKkmHV9lChoBmgJaA9DCCtrm+LxenFAlIaUUpRoFU1JAWgWR0CYiE4ACGN8dX2UKGgGaAloD0MI6UXtflUjcECUhpRSlGgVTU4BaBZHQJiLjgm7aqV1fZQoaAZoCWgPQwiwcf27PqJxQJSGlFKUaBVNWAFoFkdAmIuza0x/NXV9lChoBmgJaA9DCCDVsN9THXFAlIaUUpRoFU0iAWgWR0CYjFRE4NqhdX2UKGgGaAloD0MIZeJWQUx1cECUhpRSlGgVTcoBaBZHQJiOLbi6xxF1fZQoaAZoCWgPQwiXqUnwRsRxQJSGlFKUaBVNWwFoFkdAmI63Uc4o7XV9lChoBmgJaA9DCEnW4egqZXJAlIaUUpRoFU0wAWgWR0CYj9kVN5+pdX2UKGgGaAloD0MIdmuZDEcNbUCUhpRSlGgVTWwBaBZHQJiRunP3SKF1fZQoaAZoCWgPQwjWUkDaP3hxQJSGlFKUaBVNfgFoFkdAmJIhk7Omi3V9lChoBmgJaA9DCAithy9Tq3JAlIaUUpRoFU1hAWgWR0CYkmbTtsvadX2UKGgGaAloD0MIgZTYtT1Xa0CUhpRSlGgVTVMCaBZHQJiSkW43FUB1fZQoaAZoCWgPQwjn5EUmoDpyQJSGlFKUaBVNLwFoFkdAmJMVnqVyFXV9lChoBmgJaA9DCLjkuFN6anFAlIaUUpRoFU01AWgWR0CYlLQq7ROUdX2UKGgGaAloD0MIoN/3bx58cECUhpRSlGgVTVkBaBZHQJiWpV+7UXp1fZQoaAZoCWgPQwgMsfojjDZsQJSGlFKUaBVNOQFoFkdAmJdhib2DhHV9lChoBmgJaA9DCNXKhF9qp3BAlIaUUpRoFU1qAWgWR0CYl2cz67/XdX2UKGgGaAloD0MIFcWrrG2PcECUhpRSlGgVTUgDaBZHQJiZyi8Fpwl1fZQoaAZoCWgPQwgTRUjdjttyQJSGlFKUaBVNFwFoFkdAmJrfOdGy5nV9lChoBmgJaA9DCK8jDtmAA3JAlIaUUpRoFU0/AWgWR0CYm8X1rZandX2UKGgGaAloD0MIF7oSgWo8ckCUhpRSlGgVTYQBaBZHQJidPrD63y91fZQoaAZoCWgPQwjW4lMATO5wQJSGlFKUaBVNawFoFkdAmJ10euFHrnV9lChoBmgJaA9DCNR8lXxsgXBAlIaUUpRoFU2UAWgWR0CYnYORkmQbdX2UKGgGaAloD0MICcA/pcqibECUhpRSlGgVTTsBaBZHQJid+NIbwSd1fZQoaAZoCWgPQwiUvDrHAEJsQJSGlFKUaBVNPwFoFkdAmJ5teD3/P3V9lChoBmgJaA9DCBSUopX7q29AlIaUUpRoFU1lAWgWR0CYoCdFOO81dX2UKGgGaAloD0MIhiAHJcwfcECUhpRSlGgVTVQBaBZHQJigZZW7voh1fZQoaAZoCWgPQwiXV663DR5wQJSGlFKUaBVNKwFoFkdAmKDotthuwXV9lChoBmgJaA9DCHeHFAOk/W1AlIaUUpRoFU2ZAWgWR0CYok52Qnx8dX2UKGgGaAloD0MIHuIftrR4cECUhpRSlGgVTVgBaBZHQJikwTyrgfl1fZQoaAZoCWgPQwiU9ZuJ6RFzQJSGlFKUaBVNWgFoFkdAmKWpZKWcBnV9lChoBmgJaA9DCEClSpQ9P3FAlIaUUpRoFU1iAWgWR0CYpgT4tYjjdX2UKGgGaAloD0MIgosVNViQcECUhpRSlGgVTS0BaBZHQJimYWUKRdR1fZQoaAZoCWgPQwihurn428o8QJSGlFKUaBVL9mgWR0CYp0y6cy31dX2UKGgGaAloD0MIS7A4nPldbUCUhpRSlGgVTT4BaBZHQJiot3eN1hd1fZQoaAZoCWgPQwiW620zVYVyQJSGlFKUaBVNXgFoFkdAmKkxs/IKdHV9lChoBmgJaA9DCDbOpiOAaGlAlIaUUpRoFU3CAmgWR0CYqWlQ/HHWdX2UKGgGaAloD0MIxEMYP43Ob0CUhpRSlGgVTS4BaBZHQJip5uivgWJ1fZQoaAZoCWgPQwgcKVsk7UZPQJSGlFKUaBVL7GgWR0CYq4pEhJRPdX2UKGgGaAloD0MIWK1M+OXzckCUhpRSlGgVTWYBaBZHQJisZbnoxHp1fZQoaAZoCWgPQwhJL2r36wZxQJSGlFKUaBVNOQFoFkdAmKyNE9dNWXV9lChoBmgJaA9DCETBjCmYr3FAlIaUUpRoFU1AAWgWR0CYrJbAUL2IdX2UKGgGaAloD0MIisiwircwb0CUhpRSlGgVTRUBaBZHQJjKq3Td+G51fZQoaAZoCWgPQwh8D5ccd6dxQJSGlFKUaBVNjQFoFkdAmMqs9bHIZXV9lChoBmgJaA9DCMtlo3P+ZW9AlIaUUpRoFU0KAWgWR0CYywssQNCrdX2UKGgGaAloD0MIYVPnUXEfcUCUhpRSlGgVTR8BaBZHQJjLv5P/JeV1fZQoaAZoCWgPQwh8gVmhCIhwQJSGlFKUaBVNSAFoFkdAmMxY+B6KL3V9lChoBmgJaA9DCOer5GN3TU5AlIaUUpRoFUveaBZHQJjMjySV4X51fZQoaAZoCWgPQwg900uMJSJyQJSGlFKUaBVNFwFoFkdAmM0ELMLWqnV9lChoBmgJaA9DCBRZayh1Y3BAlIaUUpRoFU03AWgWR0CY0LSCvovBdX2UKGgGaAloD0MIBB2tagnFcECUhpRSlGgVTWMBaBZHQJjRutV7x/d1fZQoaAZoCWgPQwh0tKolHY9xQJSGlFKUaBVNUQFoFkdAmNI/mozeoHV9lChoBmgJaA9DCGMJa2PsYWxAlIaUUpRoFU0PAWgWR0CY0njuKGcndX2UKGgGaAloD0MIvr7WpcZPcUCUhpRSlGgVTTEBaBZHQJjStmXgLql1fZQoaAZoCWgPQwhQcLGiRi5xQJSGlFKUaBVNJQFoFkdAmNManvUjLXV9lChoBmgJaA9DCJHUQsnkjW9AlIaUUpRoFU0tAWgWR0CY04qaPS2IdX2UKGgGaAloD0MIf6MdN7yVckCUhpRSlGgVTQoBaBZHQJjWl80DU3J1fZQoaAZoCWgPQwhCs+veCkdwQJSGlFKUaBVNLwFoFkdAmNdY0l7dBXV9lChoBmgJaA9DCHejj/mAGW1AlIaUUpRoFU1GAWgWR0CY2EyLQ5WBdX2UKGgGaAloD0MIAMrfveP7cECUhpRSlGgVTUoBaBZHQJjYsoZydWh1fZQoaAZoCWgPQwjwUBToE8FDQJSGlFKUaBVL72gWR0CY2fEVFhG6dX2UKGgGaAloD0MIxjGSPYJVc0CUhpRSlGgVTWkBaBZHQJja7ThHbyp1fZQoaAZoCWgPQwjwGYnQCKlwQJSGlFKUaBVNgwFoFkdAmNxJk078vXV9lChoBmgJaA9DCG/UCtP3125AlIaUUpRoFU2CAWgWR0CY3KNRm9QGdX2UKGgGaAloD0MIy4KJP8pQcECUhpRSlGgVTRoBaBZHQJjc7NyHVPN1fZQoaAZoCWgPQwjKi0zAr/huQJSGlFKUaBVNFQFoFkdAmN03+dbxE3V9lChoBmgJaA9DCHYcP1SaVm9AlIaUUpRoFU0hAWgWR0CY3hX9itq6dX2UKGgGaAloD0MIB3jSwuXxcECUhpRSlGgVTRsBaBZHQJjeOVZ9uxd1fZQoaAZoCWgPQwjrq6sCNaxgQJSGlFKUaBVN6ANoFkdAmN+Fs+FDfHV9lChoBmgJaA9DCMO68e6IQXBAlIaUUpRoFU1VAWgWR0CY36NTcZccdX2UKGgGaAloD0MIqG+Z02VwXUCUhpRSlGgVTegDaBZHQJjfsj9n9Nx1fZQoaAZoCWgPQwizfF2GP8RwQJSGlFKUaBVNOwFoFkdAmN/GFnIyTXV9lChoBmgJaA9DCBuEud3LFU9AlIaUUpRoFUvDaBZHQJjf1/axoqV1fZQoaAZoCWgPQwioVImytxFxQJSGlFKUaBVNKgFoFkdAmOITZcs19HV9lChoBmgJaA9DCCveyDxyTW1AlIaUUpRoFU0KAWgWR0CY4iO6unuRdX2UKGgGaAloD0MI0m9fB05ibkCUhpRSlGgVTXIBaBZHQJjj6pm29ct1fZQoaAZoCWgPQwjQY5RnXiJBQJSGlFKUaBVNGwFoFkdAmOSbw8W9DnV9lChoBmgJaA9DCGr7V1Yaam1AlIaUUpRoFU06AWgWR0CY5ONbkfcOdX2UKGgGaAloD0MId0gxQOLXcECUhpRSlGgVTSQBaBZHQJjnDeqJdjZ1fZQoaAZoCWgPQwiW620zFTlyQJSGlFKUaBVNMQFoFkdAmOc7YXfqHHV9lChoBmgJaA9DCH+EYcDSn3JAlIaUUpRoFU0YAWgWR0CY54z/6wdKdX2UKGgGaAloD0MISIeHMH7Kb0CUhpRSlGgVTV4BaBZHQJjoWa+evp11fZQoaAZoCWgPQwh1ApoI2ylzQJSGlFKUaBVNVwFoFkdAmOhm6kIomXV9lChoBmgJaA9DCKuYSj/hhm5AlIaUUpRoFU0pAWgWR0CY6GPQv6CUdX2UKGgGaAloD0MICiyAKcN+cUCUhpRSlGgVTQ8BaBZHQJjoxcHGCI11fZQoaAZoCWgPQwh4l4v4zl9tQJSGlFKUaBVNFwFoFkdAmOkmDUVi4XV9lChoBmgJaA9DCP/KSpPSw25AlIaUUpRoFU0ZAWgWR0CY6Sv114gSdX2UKGgGaAloD0MIRSv3ArMBckCUhpRSlGgVTUMBaBZHQJjqisT37DV1fZQoaAZoCWgPQwiWlpF6Dx5yQJSGlFKUaBVNWAFoFkdAmOsd38n/k3V9lChoBmgJaA9DCCmUha8vD3BAlIaUUpRoFU0tAWgWR0CY7FyGi5/cdX2UKGgGaAloD0MIzF62nbb/cECUhpRSlGgVTUgBaBZHQJjtVSiudPN1fZQoaAZoCWgPQwgnwRvS6DpyQJSGlFKUaBVNGgFoFkdAmO48olUp/nV9lChoBmgJaA9DCKfs9IN6A3JAlIaUUpRoFU1CAWgWR0CY7wLTQVsUdX2UKGgGaAloD0MI5V/LKxdncECUhpRSlGgVTTYBaBZHQJjvi45Lh751fZQoaAZoCWgPQwgYJ77aUZA9QJSGlFKUaBVL0mgWR0CY75+AEt/XdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
lunar_lander.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:12b881152065df9b6764eb700786f24cfd0a7153fdbac619193dbe6fc478c91c
3
+ size 147416
lunar_lander/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
lunar_lander/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2176605310>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f21766053a0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2176605430>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f21766054c0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f2176605550>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f21766055e0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2176605670>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2176605700>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f2176605790>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2176605820>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f21766058b0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2176605940>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f21766018a0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1678183970083999451,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFpotr3i8qM/Mwkgv563+L748g+9wFZZvgAAAAAAAAAAM1k/vGVfRz9cmJI8et2WvhUTib0tX/88AAAAAAAAAAAzres8j30RvOa7CLzzW5088vB1vQh3gj0AAIA/AACAP82SHr2vfGk90ASSvdDzIr5iVR292g19vQAAAAAAAAAArZQvvtnL/j45A5M+rP+WvvkW+jypGLC8AAAAAAAAAAAApjs9g25OPay9Br7PISy+4YI6vRwNNr0AAAAAAAAAADNp9DwfNbO5Hs2utp0YWrIq3/A7qzjNNQAAgD8AAIA/5heFvXZQSLyM74U7eYQqPIp/qL1HZRQ9AACAPwAAgD/mmAE9Eja7PNb4vT3J2ye+ustEPS7iuTwAAAAAAAAAAEDAkD4GM1Y/VcqkPiGd577iysA+5gE+PAAAAAAAAAAAs52ovRLM3D5eN5s9VIqavk4yA722BHs9AAAAAAAAAADNC5O8hZPuPFMWlj2fv2O+aCUCPQ1j1rsAAAAAAAAAAADLnTxQ+Jk/KhCPPTU02L447QA9A7EQPQAAAAAAAAAAoF9NvgK0Hj9HcAw+FtmDvh7en71iMps9AAAAAAAAAABAOdY9KUhNunjxODpOjq01fCCFOsubVrkAAAAAAACAPwDwTry5i7s/kO+EvdeY1rx/LkS9hAkDvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILekoB/MncUCUhpRSlIwBbJRNLQGMAXSUR0CYaAtQbdaddX2UKGgGaAloD0MIj41AvC74YkCUhpRSlGgVTegDaBZHQJhoNk3CKrJ1fZQoaAZoCWgPQwhJaMu5FF9uQJSGlFKUaBVN0AFoFkdAmGq668QI2XV9lChoBmgJaA9DCIL/rWQHLnBAlIaUUpRoFU1fAWgWR0CYhBJbt7a7dX2UKGgGaAloD0MIzXNEvkvUbECUhpRSlGgVTT0BaBZHQJiFLaPCEYh1fZQoaAZoCWgPQwjuX1lp0rxuQJSGlFKUaBVNRAFoFkdAmIVcxTKkmHV9lChoBmgJaA9DCCtrm+LxenFAlIaUUpRoFU1JAWgWR0CYiE4ACGN8dX2UKGgGaAloD0MI6UXtflUjcECUhpRSlGgVTU4BaBZHQJiLjgm7aqV1fZQoaAZoCWgPQwiwcf27PqJxQJSGlFKUaBVNWAFoFkdAmIuza0x/NXV9lChoBmgJaA9DCCDVsN9THXFAlIaUUpRoFU0iAWgWR0CYjFRE4NqhdX2UKGgGaAloD0MIZeJWQUx1cECUhpRSlGgVTcoBaBZHQJiOLbi6xxF1fZQoaAZoCWgPQwiXqUnwRsRxQJSGlFKUaBVNWwFoFkdAmI63Uc4o7XV9lChoBmgJaA9DCEnW4egqZXJAlIaUUpRoFU0wAWgWR0CYj9kVN5+pdX2UKGgGaAloD0MIdmuZDEcNbUCUhpRSlGgVTWwBaBZHQJiRunP3SKF1fZQoaAZoCWgPQwjWUkDaP3hxQJSGlFKUaBVNfgFoFkdAmJIhk7Omi3V9lChoBmgJaA9DCAithy9Tq3JAlIaUUpRoFU1hAWgWR0CYkmbTtsvadX2UKGgGaAloD0MIgZTYtT1Xa0CUhpRSlGgVTVMCaBZHQJiSkW43FUB1fZQoaAZoCWgPQwjn5EUmoDpyQJSGlFKUaBVNLwFoFkdAmJMVnqVyFXV9lChoBmgJaA9DCLjkuFN6anFAlIaUUpRoFU01AWgWR0CYlLQq7ROUdX2UKGgGaAloD0MIoN/3bx58cECUhpRSlGgVTVkBaBZHQJiWpV+7UXp1fZQoaAZoCWgPQwgMsfojjDZsQJSGlFKUaBVNOQFoFkdAmJdhib2DhHV9lChoBmgJaA9DCNXKhF9qp3BAlIaUUpRoFU1qAWgWR0CYl2cz67/XdX2UKGgGaAloD0MIFcWrrG2PcECUhpRSlGgVTUgDaBZHQJiZyi8Fpwl1fZQoaAZoCWgPQwgTRUjdjttyQJSGlFKUaBVNFwFoFkdAmJrfOdGy5nV9lChoBmgJaA9DCK8jDtmAA3JAlIaUUpRoFU0/AWgWR0CYm8X1rZandX2UKGgGaAloD0MIF7oSgWo8ckCUhpRSlGgVTYQBaBZHQJidPrD63y91fZQoaAZoCWgPQwjW4lMATO5wQJSGlFKUaBVNawFoFkdAmJ10euFHrnV9lChoBmgJaA9DCNR8lXxsgXBAlIaUUpRoFU2UAWgWR0CYnYORkmQbdX2UKGgGaAloD0MICcA/pcqibECUhpRSlGgVTTsBaBZHQJid+NIbwSd1fZQoaAZoCWgPQwiUvDrHAEJsQJSGlFKUaBVNPwFoFkdAmJ5teD3/P3V9lChoBmgJaA9DCBSUopX7q29AlIaUUpRoFU1lAWgWR0CYoCdFOO81dX2UKGgGaAloD0MIhiAHJcwfcECUhpRSlGgVTVQBaBZHQJigZZW7voh1fZQoaAZoCWgPQwiXV663DR5wQJSGlFKUaBVNKwFoFkdAmKDotthuwXV9lChoBmgJaA9DCHeHFAOk/W1AlIaUUpRoFU2ZAWgWR0CYok52Qnx8dX2UKGgGaAloD0MIHuIftrR4cECUhpRSlGgVTVgBaBZHQJikwTyrgfl1fZQoaAZoCWgPQwiU9ZuJ6RFzQJSGlFKUaBVNWgFoFkdAmKWpZKWcBnV9lChoBmgJaA9DCEClSpQ9P3FAlIaUUpRoFU1iAWgWR0CYpgT4tYjjdX2UKGgGaAloD0MIgosVNViQcECUhpRSlGgVTS0BaBZHQJimYWUKRdR1fZQoaAZoCWgPQwihurn428o8QJSGlFKUaBVL9mgWR0CYp0y6cy31dX2UKGgGaAloD0MIS7A4nPldbUCUhpRSlGgVTT4BaBZHQJiot3eN1hd1fZQoaAZoCWgPQwiW620zVYVyQJSGlFKUaBVNXgFoFkdAmKkxs/IKdHV9lChoBmgJaA9DCDbOpiOAaGlAlIaUUpRoFU3CAmgWR0CYqWlQ/HHWdX2UKGgGaAloD0MIxEMYP43Ob0CUhpRSlGgVTS4BaBZHQJip5uivgWJ1fZQoaAZoCWgPQwgcKVsk7UZPQJSGlFKUaBVL7GgWR0CYq4pEhJRPdX2UKGgGaAloD0MIWK1M+OXzckCUhpRSlGgVTWYBaBZHQJisZbnoxHp1fZQoaAZoCWgPQwhJL2r36wZxQJSGlFKUaBVNOQFoFkdAmKyNE9dNWXV9lChoBmgJaA9DCETBjCmYr3FAlIaUUpRoFU1AAWgWR0CYrJbAUL2IdX2UKGgGaAloD0MIisiwircwb0CUhpRSlGgVTRUBaBZHQJjKq3Td+G51fZQoaAZoCWgPQwh8D5ccd6dxQJSGlFKUaBVNjQFoFkdAmMqs9bHIZXV9lChoBmgJaA9DCMtlo3P+ZW9AlIaUUpRoFU0KAWgWR0CYywssQNCrdX2UKGgGaAloD0MIYVPnUXEfcUCUhpRSlGgVTR8BaBZHQJjLv5P/JeV1fZQoaAZoCWgPQwh8gVmhCIhwQJSGlFKUaBVNSAFoFkdAmMxY+B6KL3V9lChoBmgJaA9DCOer5GN3TU5AlIaUUpRoFUveaBZHQJjMjySV4X51fZQoaAZoCWgPQwg900uMJSJyQJSGlFKUaBVNFwFoFkdAmM0ELMLWqnV9lChoBmgJaA9DCBRZayh1Y3BAlIaUUpRoFU03AWgWR0CY0LSCvovBdX2UKGgGaAloD0MIBB2tagnFcECUhpRSlGgVTWMBaBZHQJjRutV7x/d1fZQoaAZoCWgPQwh0tKolHY9xQJSGlFKUaBVNUQFoFkdAmNI/mozeoHV9lChoBmgJaA9DCGMJa2PsYWxAlIaUUpRoFU0PAWgWR0CY0njuKGcndX2UKGgGaAloD0MIvr7WpcZPcUCUhpRSlGgVTTEBaBZHQJjStmXgLql1fZQoaAZoCWgPQwhQcLGiRi5xQJSGlFKUaBVNJQFoFkdAmNManvUjLXV9lChoBmgJaA9DCJHUQsnkjW9AlIaUUpRoFU0tAWgWR0CY04qaPS2IdX2UKGgGaAloD0MIf6MdN7yVckCUhpRSlGgVTQoBaBZHQJjWl80DU3J1fZQoaAZoCWgPQwhCs+veCkdwQJSGlFKUaBVNLwFoFkdAmNdY0l7dBXV9lChoBmgJaA9DCHejj/mAGW1AlIaUUpRoFU1GAWgWR0CY2EyLQ5WBdX2UKGgGaAloD0MIAMrfveP7cECUhpRSlGgVTUoBaBZHQJjYsoZydWh1fZQoaAZoCWgPQwjwUBToE8FDQJSGlFKUaBVL72gWR0CY2fEVFhG6dX2UKGgGaAloD0MIxjGSPYJVc0CUhpRSlGgVTWkBaBZHQJja7ThHbyp1fZQoaAZoCWgPQwjwGYnQCKlwQJSGlFKUaBVNgwFoFkdAmNxJk078vXV9lChoBmgJaA9DCG/UCtP3125AlIaUUpRoFU2CAWgWR0CY3KNRm9QGdX2UKGgGaAloD0MIy4KJP8pQcECUhpRSlGgVTRoBaBZHQJjc7NyHVPN1fZQoaAZoCWgPQwjKi0zAr/huQJSGlFKUaBVNFQFoFkdAmN03+dbxE3V9lChoBmgJaA9DCHYcP1SaVm9AlIaUUpRoFU0hAWgWR0CY3hX9itq6dX2UKGgGaAloD0MIB3jSwuXxcECUhpRSlGgVTRsBaBZHQJjeOVZ9uxd1fZQoaAZoCWgPQwjrq6sCNaxgQJSGlFKUaBVN6ANoFkdAmN+Fs+FDfHV9lChoBmgJaA9DCMO68e6IQXBAlIaUUpRoFU1VAWgWR0CY36NTcZccdX2UKGgGaAloD0MIqG+Z02VwXUCUhpRSlGgVTegDaBZHQJjfsj9n9Nx1fZQoaAZoCWgPQwizfF2GP8RwQJSGlFKUaBVNOwFoFkdAmN/GFnIyTXV9lChoBmgJaA9DCBuEud3LFU9AlIaUUpRoFUvDaBZHQJjf1/axoqV1fZQoaAZoCWgPQwioVImytxFxQJSGlFKUaBVNKgFoFkdAmOITZcs19HV9lChoBmgJaA9DCCveyDxyTW1AlIaUUpRoFU0KAWgWR0CY4iO6unuRdX2UKGgGaAloD0MI0m9fB05ibkCUhpRSlGgVTXIBaBZHQJjj6pm29ct1fZQoaAZoCWgPQwjQY5RnXiJBQJSGlFKUaBVNGwFoFkdAmOSbw8W9DnV9lChoBmgJaA9DCGr7V1Yaam1AlIaUUpRoFU06AWgWR0CY5ONbkfcOdX2UKGgGaAloD0MId0gxQOLXcECUhpRSlGgVTSQBaBZHQJjnDeqJdjZ1fZQoaAZoCWgPQwiW620zFTlyQJSGlFKUaBVNMQFoFkdAmOc7YXfqHHV9lChoBmgJaA9DCH+EYcDSn3JAlIaUUpRoFU0YAWgWR0CY54z/6wdKdX2UKGgGaAloD0MISIeHMH7Kb0CUhpRSlGgVTV4BaBZHQJjoWa+evp11fZQoaAZoCWgPQwh1ApoI2ylzQJSGlFKUaBVNVwFoFkdAmOhm6kIomXV9lChoBmgJaA9DCKuYSj/hhm5AlIaUUpRoFU0pAWgWR0CY6GPQv6CUdX2UKGgGaAloD0MICiyAKcN+cUCUhpRSlGgVTQ8BaBZHQJjoxcHGCI11fZQoaAZoCWgPQwh4l4v4zl9tQJSGlFKUaBVNFwFoFkdAmOkmDUVi4XV9lChoBmgJaA9DCP/KSpPSw25AlIaUUpRoFU0ZAWgWR0CY6Sv114gSdX2UKGgGaAloD0MIRSv3ArMBckCUhpRSlGgVTUMBaBZHQJjqisT37DV1fZQoaAZoCWgPQwiWlpF6Dx5yQJSGlFKUaBVNWAFoFkdAmOsd38n/k3V9lChoBmgJaA9DCCmUha8vD3BAlIaUUpRoFU0tAWgWR0CY7FyGi5/cdX2UKGgGaAloD0MIzF62nbb/cECUhpRSlGgVTUgBaBZHQJjtVSiudPN1fZQoaAZoCWgPQwgnwRvS6DpyQJSGlFKUaBVNGgFoFkdAmO48olUp/nV9lChoBmgJaA9DCKfs9IN6A3JAlIaUUpRoFU1CAWgWR0CY7wLTQVsUdX2UKGgGaAloD0MI5V/LKxdncECUhpRSlGgVTTYBaBZHQJjvi45Lh751fZQoaAZoCWgPQwgYJ77aUZA9QJSGlFKUaBVL0mgWR0CY75+AEt/XdWUu"
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
lunar_lander/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0310f41ffbb3e48479c596dbeb8a989c739a93f9791077eb32a15ebe4ec4a1e7
3
+ size 87929
lunar_lander/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eaaaac8dadee4d19e6caf606b8d0b17914cab2ef48f14d381ce8f0f678a3532b
3
+ size 43393
lunar_lander/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
lunar_lander/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (198 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 255.00826773344124, "std_reward": 20.991260310408876, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-07T10:36:54.805256"}