File size: 4,171 Bytes
0dc25c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
"""
A model worker executes the model.
"""
import argparse
import json
import uuid

from fastapi import FastAPI, Request
from fastapi.responses import StreamingResponse
from transformers import AutoModel, AutoTokenizer
import torch
import uvicorn
import bitsandbytes as bnb
from transformers import BitsAndBytesConfig

from transformers.generation.streamers import BaseStreamer
from threading import Thread
from queue import Queue


class TokenStreamer(BaseStreamer):
    def __init__(self, skip_prompt: bool = False, timeout=None):
        self.skip_prompt = skip_prompt

        # variables used in the streaming process
        self.token_queue = Queue()
        self.stop_signal = None
        self.next_tokens_are_prompt = True
        self.timeout = timeout

    def put(self, value):
        if len(value.shape) > 1 and value.shape[0] > 1:
            raise ValueError("TextStreamer only supports batch size 1")
        elif len(value.shape) > 1:
            value = value[0]

        if self.skip_prompt and self.next_tokens_are_prompt:
            self.next_tokens_are_prompt = False
            return

        for token in value.tolist():
            self.token_queue.put(token)

    def end(self):
        self.token_queue.put(self.stop_signal)

    def __iter__(self):
        return self

    def __next__(self):
        value = self.token_queue.get(timeout=self.timeout)
        if value == self.stop_signal:
            raise StopIteration()
        else:
            return value


class ModelWorker:
    def __init__(self, model_path, device='cuda'):
        self.device = device
        
        # Configure 4-bit quantization
        quantization_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_compute_dtype=torch.float16,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_use_double_quant=True
        )
        
        self.glm_model = AutoModel.from_pretrained(
            model_path,
            trust_remote_code=True,
            device_map=device,  # Use device_map instead of device
            quantization_config=quantization_config
        ).eval()  # Remove .to(device) call
        
        self.glm_tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)

    @torch.inference_mode()
    def generate_stream(self, params):
        tokenizer, model = self.glm_tokenizer, self.glm_model

        prompt = params["prompt"]

        temperature = float(params.get("temperature", 1.0))
        top_p = float(params.get("top_p", 1.0))
        max_new_tokens = int(params.get("max_new_tokens", 256))

        inputs = tokenizer([prompt], return_tensors="pt")
        inputs = inputs.to(self.device)
        streamer = TokenStreamer(skip_prompt=True)
        thread = Thread(target=model.generate,
                        kwargs=dict(**inputs, max_new_tokens=int(max_new_tokens),
                                    temperature=float(temperature), top_p=float(top_p),
                                    streamer=streamer))
        thread.start()
        for token_id in streamer:
            yield (json.dumps({"token_id": token_id, "error_code": 0}) + "\n").encode()

    def generate_stream_gate(self, params):
        try:
            for x in self.generate_stream(params):
                yield x
        except Exception as e:
            print("Caught Unknown Error", e)
            ret = {
                "text": "Server Error",
                "error_code": 1,
            }
            yield (json.dumps(ret)+ "\n").encode()


app = FastAPI()


@app.post("/generate_stream")
async def generate_stream(request: Request):
    params = await request.json()

    generator = worker.generate_stream_gate(params)
    return StreamingResponse(generator)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--host", type=str, default="localhost")
    parser.add_argument("--port", type=int, default=10000)
    parser.add_argument("--model-path", type=str, default="THUDM/glm-4-voice-9b")
    args = parser.parse_args()

    worker = ModelWorker(args.model_path)
    uvicorn.run(app, host=args.host, port=args.port, log_level="info")