Upload PPO LunarLander-v2 agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 253.83 +/- 39.80
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79c85cc4dab0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79c85cc4db40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79c85cc4dbd0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79c85cc4dc60>", "_build": "<function ActorCriticPolicy._build at 0x79c85cc4dcf0>", "forward": "<function ActorCriticPolicy.forward at 0x79c85cc4dd80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79c85cc4de10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79c85cc4dea0>", "_predict": "<function ActorCriticPolicy._predict at 0x79c85cc4df30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79c85cc4dfc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79c85cc4e050>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79c85cc4e0e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79c85cbe2bc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1730579162914664089, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEDoIT7Pl1m88gaquoRD1DjhldC9uDLnOQAAgD8AAIA/mqn3OnZ2rz/6sEM9kJT4vmirDLuWVy+8AAAAAAAAAABmmMW99Q9nPkr39j1ub5W+h7fNPFmjgj0AAAAAAAAAAMhYg75+w5o+LweFPiX76b5SmlS98sc7PQAAAAAAAAAAmoX0u7cvRD9Q7lM9MOITv+pF7rxi8dc7AAAAAAAAAABAyMK9G1+QP+90Sr6p0yy/nlzSvQgrsToAAAAAAAAAAJC1lr6S1yU/NdfaO34ODb/uPke+XV6YPQAAAAAAAAAAs8Q3vT18XLt3bca76c8OPSbszjzjTu69AACAPwAAgD/gYiw+dLidvAf7Q7mp+iA4hqUMvlQFkTgAAIA/AACAP0MjgT4E6Z4/78kFPwlXFL/sCqA+tsoFPgAAAAAAAAAArXlePkBcnD6a11m+no23vmg7PjwsRT+9AAAAAAAAAADDuH6+QceSPwdhA7+7kgm/sYibvhYbzb0AAAAAAAAAADPT0rs2Vkm8VoJiPNs+FL6A5AC8VmRwvAAAgD8AAIA/TaXXvS4Fkz3GAIA+mwYuvvi82D1gEeQ8AAAAAAAAAAAggz0+AXTMvPMd4DlzqZG4noc7vnObXrkAAIA/AACAP905mT5k+o0/DMSdPpV8Lb8ry7g+oZQFPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV7gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHA3rO/tY0WMAWyUS9GMAXSUR0CmKXPBacI7dX2UKGgGR0BxV+fpUxVRaAdL3WgIR0CmKZY/Vy3kdX2UKGgGR0BugDd+G47SaAdLxGgIR0CmKsNPP9k0dX2UKGgGR0Buqjy+Yc//aAdLy2gIR0CmKt/ub7TEdX2UKGgGR0ByuVgMMI/raAdL9WgIR0CmKyNdiUgTdX2UKGgGR0Bw5IZl4C6paAdL0GgIR0CmKzdOh0yQdX2UKGgGR0Bwba3H7xd6aAdLuGgIR0CmK64+B6KMdX2UKGgGR0BxDp7+kxh2aAdL42gIR0CmLHCwjdHldX2UKGgGR0Bxj3Qla8pTaAdLzGgIR0CmLQMniNsFdX2UKGgGR0Bx/m+sYEW7aAdNAwFoCEdApi0iosI3SHV9lChoBkdAc+RGvOhTO2gHS99oCEdApi0iJoCdSXV9lChoBkdAb/KX3QD3d2gHS/doCEdApi2W7e2uxXV9lChoBkdAcXZH80k4WGgHS+RoCEdApi3Fgtvn83V9lChoBkdAcYX6sQumJmgHS8NoCEdApi7qQq7ROXV9lChoBkdAcP2xxT850mgHS7doCEdApi8h9w3o93V9lChoBkdAcRu/tpmEoWgHS7BoCEdApi+bO9nK4nV9lChoBkdAcXgAUcn3L2gHS/doCEdApjASLMs6JnV9lChoBkdAcXRGR3eN1mgHS+JoCEdApjAeZZ0Sy3V9lChoBkdAY0qlqrR0EGgHTegDaAhHQKYwkoS+QEJ1fZQoaAZHQHCLd0zTF2poB0vWaAhHQKYxhuUD+zd1fZQoaAZHQG/MRcVxjrloB0vMaAhHQKYx3sOXmeV1fZQoaAZHQHEccCo0hvBoB0vYaAhHQKYx+5Dqnm91fZQoaAZHQHIDHV5KODJoB0vfaAhHQKYyM2c8Tzx1fZQoaAZHQHEsN1EE1VJoB0vaaAhHQKYycHVPN3Z1fZQoaAZHQHLpLlA/s3RoB0vcaAhHQKYymPhhpg11fZQoaAZHQGSGcLronrpoB03oA2gIR0CmMsK7qY7adX2UKGgGR0Bi4w8QqZtvaAdN6ANoCEdApjNMyLyc1HV9lChoBkdAcCCn6VMVUWgHS9toCEdApjN6R6nivXV9lChoBkdAchDr/Khcq2gHS+xoCEdApjOW0zCUHXV9lChoBkdAcdVI8QqZt2gHS9VoCEdApjPkrsjVx3V9lChoBkdAcbypda+vhmgHS/hoCEdApjQqzu4PPXV9lChoBkdAZz/K28Zk1GgHTegDaAhHQKY0TV1fVqh1fZQoaAZHQHE3VFtsN2FoB0u2aAhHQKY0k++M6zV1fZQoaAZHQHJoNXT3IuJoB0v2aAhHQKY0pNet0V91fZQoaAZHQG8QoYNy5qdoB0vXaAhHQKY0x62v0RR1fZQoaAZHQHGeCZF5OahoB0veaAhHQKY1MZML4N91fZQoaAZHQHCUubZvkzZoB0vZaAhHQKY1SmVqveR1fZQoaAZHQHAaLGBFuvVoB0vLaAhHQKY1kAPuogp1fZQoaAZHQHBgdCE6DGtoB0vcaAhHQKY1pXarWAh1fZQoaAZHQHAcgpWmxdJoB0vsaAhHQKY1uKzAvct1fZQoaAZHQHHYuKXOW0JoB0vKaAhHQKY2AYw7DEZ1fZQoaAZHQHMI6ij+JgtoB0vCaAhHQKY2KkC3gDR1fZQoaAZHQHBqBV+7UXpoB0vYaAhHQKY2WuIyj591fZQoaAZHQHKOMajvd/JoB0vLaAhHQKY20H0K7Zp1fZQoaAZHQHAjWgBcRlJoB0v0aAhHQKY3JO9nK4h1fZQoaAZHQG67TpPhybRoB0vHaAhHQKY3QxrSE151fZQoaAZHQHIr0Ne+mFdoB0vPaAhHQKY3ToIOYpl1fZQoaAZHQHD7u6d1+y9oB0vDaAhHQKY3WamXPZ91fZQoaAZHQHFcFK5CngpoB0u9aAhHQKY3ya1Cw8p1fZQoaAZHQHAfxi1AqutoB00fAWgIR0CmOBikoF3ZdX2UKGgGR0BxXkpiI+GHaAdLvWgIR0CmOEXFLnLadX2UKGgGR0Bww3FId2gWaAdLwGgIR0CmOJ/q5byIdX2UKGgGR0BhrT7bcoH+aAdN6ANoCEdApjjT/yXlbXV9lChoBkdAcJu7g88s+WgHS/toCEdApjj26Ae7tnV9lChoBkdAcsK1G9YfXGgHS9toCEdApjla4MF2V3V9lChoBkdAcMlf3N9piGgHTRYBaAhHQKY5anl4keJ1fZQoaAZHQHFDRe5WilBoB00CAWgIR0CmOa+sgdOqdX2UKGgGR0BxDiU9pyp8aAdL42gIR0CmOe3dsSCfdX2UKGgGR0BzFvKp1ie/aAdLvWgIR0CmOe0Rvm5ldX2UKGgGR0BwSsGzKLbYaAdL0GgIR0CmOfsgU1yedX2UKGgGR0BuDX6wdKdyaAdLyGgIR0CmOgcHObAldX2UKGgGR0BwBJYLb5/LaAdLxWgIR0CmOnc4xUNsdX2UKGgGR0BwqB5iVjZtaAdLx2gIR0CmOvUS7GvPdX2UKGgGR0ByZM12q1gIaAdL1WgIR0CmOv4jKPn0dX2UKGgGR0Bw3p8b70nPaAdLwGgIR0CmOzQ/HHWCdX2UKGgGR0BwRCQ3gk1NaAdL0GgIR0CmO6ESuhbodX2UKGgGR0BzZJHMEA5raAdLzWgIR0CmO7jT8YQ8dX2UKGgGR0BzvQsMAmzCaAdLvmgIR0CmPEW8qWkadX2UKGgGR0Bx72PHT7VKaAdL1mgIR0CmPFSe7L+xdX2UKGgGR0By+P0L+glGaAdL5WgIR0CmPH8mKIi1dX2UKGgGR0BvyNGZuyeJaAdLvmgIR0CmPJ2e6I3zdX2UKGgGR0Bzmb81n/T9aAdLyGgIR0CmPLJkGzKLdX2UKGgGR0Bz8Yp7TlT4aAdL0GgIR0CmPOi7btZ3dX2UKGgGR0BxKmkO7QLNaAdLvGgIR0CmPRfnW8RMdX2UKGgGR0ByzyBXjlxPaAdLxmgIR0CmPcUYCQtBdX2UKGgGR0BwatoQFs55aAdL2mgIR0CmPlgG0NSZdX2UKGgGR0BykuwpvxYraAdL9WgIR0CmPn6MaS9vdX2UKGgGR0BvVGsxO+IuaAdLxmgIR0CmPocfms/6dX2UKGgGR0BlHp6Ww/xEaAdN6ANoCEdApj7JjMFEA3V9lChoBkdAcPdNUOuq3mgHTV4BaAhHQKY+7T9bX6J1fZQoaAZHQHBDCWqtHQRoB0vraAhHQKY/K++ueSV1fZQoaAZHQHGEny3CsOpoB0u6aAhHQKY/Oakyk9F1fZQoaAZHQG9o619fCyhoB0vcaAhHQKY/fIWgvlF1fZQoaAZHQHGUJ1ie/YdoB0vQaAhHQKY/oBwMpgF1fZQoaAZHQHLCB0ZFXq9oB00AAWgIR0CmQAFWfbsXdX2UKGgGR0ByHbwd8zAOaAdL4mgIR0CmQCaTnq3WdX2UKGgGR0Bxyi6f8MuwaAdL5GgIR0CmQFxODaoNdX2UKGgGR0BxQjDgqEvkaAdLvWgIR0CmQSfe1rqMdX2UKGgGR0BxhiiwjdHlaAdLqWgIR0CmQaavRqoIdX2UKGgGR0By146Oo5xSaAdL+WgIR0CmQgbDEWIodX2UKGgGR0Byh9Vea8YiaAdL8GgIR0CmQgzdUKiPdX2UKGgGR0Bxl72bobGWaAdLxGgIR0CmQgy3Td+HdX2UKGgGR0Bxa9SeiBXkaAdL3mgIR0CmQiyXdCVsdX2UKGgGR0Bx37e67NB4aAdNDQFoCEdApkLGbXpW3nV9lChoBkdAbtfgiNbTt2gHS8RoCEdApkMKDyvs7nV9lChoBkdAcRyrEcbR4WgHS+1oCEdApkMQxWT5f3V9lChoBkdAcwwsfaHsTmgHS/FoCEdApkNFbs4T9XV9lChoBkdAY53Jsfq5b2gHTegDaAhHQKZDWKiO/+N1fZQoaAZHQHD9M50bLlpoB0vRaAhHQKZDZB2OhkB1fZQoaAZHQHKAzP4VRDVoB0vlaAhHQKZD24vvjOt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:58e2ad8476fa018ce04e41478f52d66eca0cdb3dd7f5b51917218a2193d608aa
|
3 |
+
size 147907
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x79c85cc4dab0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79c85cc4db40>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79c85cc4dbd0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79c85cc4dc60>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x79c85cc4dcf0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x79c85cc4dd80>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x79c85cc4de10>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79c85cc4dea0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x79c85cc4df30>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79c85cc4dfc0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79c85cc4e050>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x79c85cc4e0e0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x79c85cbe2bc0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1730579162914664089,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEDoIT7Pl1m88gaquoRD1DjhldC9uDLnOQAAgD8AAIA/mqn3OnZ2rz/6sEM9kJT4vmirDLuWVy+8AAAAAAAAAABmmMW99Q9nPkr39j1ub5W+h7fNPFmjgj0AAAAAAAAAAMhYg75+w5o+LweFPiX76b5SmlS98sc7PQAAAAAAAAAAmoX0u7cvRD9Q7lM9MOITv+pF7rxi8dc7AAAAAAAAAABAyMK9G1+QP+90Sr6p0yy/nlzSvQgrsToAAAAAAAAAAJC1lr6S1yU/NdfaO34ODb/uPke+XV6YPQAAAAAAAAAAs8Q3vT18XLt3bca76c8OPSbszjzjTu69AACAPwAAgD/gYiw+dLidvAf7Q7mp+iA4hqUMvlQFkTgAAIA/AACAP0MjgT4E6Z4/78kFPwlXFL/sCqA+tsoFPgAAAAAAAAAArXlePkBcnD6a11m+no23vmg7PjwsRT+9AAAAAAAAAADDuH6+QceSPwdhA7+7kgm/sYibvhYbzb0AAAAAAAAAADPT0rs2Vkm8VoJiPNs+FL6A5AC8VmRwvAAAgD8AAIA/TaXXvS4Fkz3GAIA+mwYuvvi82D1gEeQ8AAAAAAAAAAAggz0+AXTMvPMd4DlzqZG4noc7vnObXrkAAIA/AACAP905mT5k+o0/DMSdPpV8Lb8ry7g+oZQFPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV7gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHA3rO/tY0WMAWyUS9GMAXSUR0CmKXPBacI7dX2UKGgGR0BxV+fpUxVRaAdL3WgIR0CmKZY/Vy3kdX2UKGgGR0BugDd+G47SaAdLxGgIR0CmKsNPP9k0dX2UKGgGR0Buqjy+Yc//aAdLy2gIR0CmKt/ub7TEdX2UKGgGR0ByuVgMMI/raAdL9WgIR0CmKyNdiUgTdX2UKGgGR0Bw5IZl4C6paAdL0GgIR0CmKzdOh0yQdX2UKGgGR0Bwba3H7xd6aAdLuGgIR0CmK64+B6KMdX2UKGgGR0BxDp7+kxh2aAdL42gIR0CmLHCwjdHldX2UKGgGR0Bxj3Qla8pTaAdLzGgIR0CmLQMniNsFdX2UKGgGR0Bx/m+sYEW7aAdNAwFoCEdApi0iosI3SHV9lChoBkdAc+RGvOhTO2gHS99oCEdApi0iJoCdSXV9lChoBkdAb/KX3QD3d2gHS/doCEdApi2W7e2uxXV9lChoBkdAcXZH80k4WGgHS+RoCEdApi3Fgtvn83V9lChoBkdAcYX6sQumJmgHS8NoCEdApi7qQq7ROXV9lChoBkdAcP2xxT850mgHS7doCEdApi8h9w3o93V9lChoBkdAcRu/tpmEoWgHS7BoCEdApi+bO9nK4nV9lChoBkdAcXgAUcn3L2gHS/doCEdApjASLMs6JnV9lChoBkdAcXRGR3eN1mgHS+JoCEdApjAeZZ0Sy3V9lChoBkdAY0qlqrR0EGgHTegDaAhHQKYwkoS+QEJ1fZQoaAZHQHCLd0zTF2poB0vWaAhHQKYxhuUD+zd1fZQoaAZHQG/MRcVxjrloB0vMaAhHQKYx3sOXmeV1fZQoaAZHQHEccCo0hvBoB0vYaAhHQKYx+5Dqnm91fZQoaAZHQHIDHV5KODJoB0vfaAhHQKYyM2c8Tzx1fZQoaAZHQHEsN1EE1VJoB0vaaAhHQKYycHVPN3Z1fZQoaAZHQHLpLlA/s3RoB0vcaAhHQKYymPhhpg11fZQoaAZHQGSGcLronrpoB03oA2gIR0CmMsK7qY7adX2UKGgGR0Bi4w8QqZtvaAdN6ANoCEdApjNMyLyc1HV9lChoBkdAcCCn6VMVUWgHS9toCEdApjN6R6nivXV9lChoBkdAchDr/Khcq2gHS+xoCEdApjOW0zCUHXV9lChoBkdAcdVI8QqZt2gHS9VoCEdApjPkrsjVx3V9lChoBkdAcbypda+vhmgHS/hoCEdApjQqzu4PPXV9lChoBkdAZz/K28Zk1GgHTegDaAhHQKY0TV1fVqh1fZQoaAZHQHE3VFtsN2FoB0u2aAhHQKY0k++M6zV1fZQoaAZHQHJoNXT3IuJoB0v2aAhHQKY0pNet0V91fZQoaAZHQG8QoYNy5qdoB0vXaAhHQKY0x62v0RR1fZQoaAZHQHGeCZF5OahoB0veaAhHQKY1MZML4N91fZQoaAZHQHCUubZvkzZoB0vZaAhHQKY1SmVqveR1fZQoaAZHQHAaLGBFuvVoB0vLaAhHQKY1kAPuogp1fZQoaAZHQHBgdCE6DGtoB0vcaAhHQKY1pXarWAh1fZQoaAZHQHAcgpWmxdJoB0vsaAhHQKY1uKzAvct1fZQoaAZHQHHYuKXOW0JoB0vKaAhHQKY2AYw7DEZ1fZQoaAZHQHMI6ij+JgtoB0vCaAhHQKY2KkC3gDR1fZQoaAZHQHBqBV+7UXpoB0vYaAhHQKY2WuIyj591fZQoaAZHQHKOMajvd/JoB0vLaAhHQKY20H0K7Zp1fZQoaAZHQHAjWgBcRlJoB0v0aAhHQKY3JO9nK4h1fZQoaAZHQG67TpPhybRoB0vHaAhHQKY3QxrSE151fZQoaAZHQHIr0Ne+mFdoB0vPaAhHQKY3ToIOYpl1fZQoaAZHQHD7u6d1+y9oB0vDaAhHQKY3WamXPZ91fZQoaAZHQHFcFK5CngpoB0u9aAhHQKY3ya1Cw8p1fZQoaAZHQHAfxi1AqutoB00fAWgIR0CmOBikoF3ZdX2UKGgGR0BxXkpiI+GHaAdLvWgIR0CmOEXFLnLadX2UKGgGR0Bww3FId2gWaAdLwGgIR0CmOJ/q5byIdX2UKGgGR0BhrT7bcoH+aAdN6ANoCEdApjjT/yXlbXV9lChoBkdAcJu7g88s+WgHS/toCEdApjj26Ae7tnV9lChoBkdAcsK1G9YfXGgHS9toCEdApjla4MF2V3V9lChoBkdAcMlf3N9piGgHTRYBaAhHQKY5anl4keJ1fZQoaAZHQHFDRe5WilBoB00CAWgIR0CmOa+sgdOqdX2UKGgGR0BxDiU9pyp8aAdL42gIR0CmOe3dsSCfdX2UKGgGR0BzFvKp1ie/aAdLvWgIR0CmOe0Rvm5ldX2UKGgGR0BwSsGzKLbYaAdL0GgIR0CmOfsgU1yedX2UKGgGR0BuDX6wdKdyaAdLyGgIR0CmOgcHObAldX2UKGgGR0BwBJYLb5/LaAdLxWgIR0CmOnc4xUNsdX2UKGgGR0BwqB5iVjZtaAdLx2gIR0CmOvUS7GvPdX2UKGgGR0ByZM12q1gIaAdL1WgIR0CmOv4jKPn0dX2UKGgGR0Bw3p8b70nPaAdLwGgIR0CmOzQ/HHWCdX2UKGgGR0BwRCQ3gk1NaAdL0GgIR0CmO6ESuhbodX2UKGgGR0BzZJHMEA5raAdLzWgIR0CmO7jT8YQ8dX2UKGgGR0BzvQsMAmzCaAdLvmgIR0CmPEW8qWkadX2UKGgGR0Bx72PHT7VKaAdL1mgIR0CmPFSe7L+xdX2UKGgGR0By+P0L+glGaAdL5WgIR0CmPH8mKIi1dX2UKGgGR0BvyNGZuyeJaAdLvmgIR0CmPJ2e6I3zdX2UKGgGR0Bzmb81n/T9aAdLyGgIR0CmPLJkGzKLdX2UKGgGR0Bz8Yp7TlT4aAdL0GgIR0CmPOi7btZ3dX2UKGgGR0BxKmkO7QLNaAdLvGgIR0CmPRfnW8RMdX2UKGgGR0ByzyBXjlxPaAdLxmgIR0CmPcUYCQtBdX2UKGgGR0BwatoQFs55aAdL2mgIR0CmPlgG0NSZdX2UKGgGR0BykuwpvxYraAdL9WgIR0CmPn6MaS9vdX2UKGgGR0BvVGsxO+IuaAdLxmgIR0CmPocfms/6dX2UKGgGR0BlHp6Ww/xEaAdN6ANoCEdApj7JjMFEA3V9lChoBkdAcPdNUOuq3mgHTV4BaAhHQKY+7T9bX6J1fZQoaAZHQHBDCWqtHQRoB0vraAhHQKY/K++ueSV1fZQoaAZHQHGEny3CsOpoB0u6aAhHQKY/Oakyk9F1fZQoaAZHQG9o619fCyhoB0vcaAhHQKY/fIWgvlF1fZQoaAZHQHGUJ1ie/YdoB0vQaAhHQKY/oBwMpgF1fZQoaAZHQHLCB0ZFXq9oB00AAWgIR0CmQAFWfbsXdX2UKGgGR0ByHbwd8zAOaAdL4mgIR0CmQCaTnq3WdX2UKGgGR0Bxyi6f8MuwaAdL5GgIR0CmQFxODaoNdX2UKGgGR0BxQjDgqEvkaAdLvWgIR0CmQSfe1rqMdX2UKGgGR0BxhiiwjdHlaAdLqWgIR0CmQaavRqoIdX2UKGgGR0By146Oo5xSaAdL+WgIR0CmQgbDEWIodX2UKGgGR0Byh9Vea8YiaAdL8GgIR0CmQgzdUKiPdX2UKGgGR0Bxl72bobGWaAdLxGgIR0CmQgy3Td+HdX2UKGgGR0Bxa9SeiBXkaAdL3mgIR0CmQiyXdCVsdX2UKGgGR0Bx37e67NB4aAdNDQFoCEdApkLGbXpW3nV9lChoBkdAbtfgiNbTt2gHS8RoCEdApkMKDyvs7nV9lChoBkdAcRyrEcbR4WgHS+1oCEdApkMQxWT5f3V9lChoBkdAcwwsfaHsTmgHS/FoCEdApkNFbs4T9XV9lChoBkdAY53Jsfq5b2gHTegDaAhHQKZDWKiO/+N1fZQoaAZHQHD9M50bLlpoB0vRaAhHQKZDZB2OhkB1fZQoaAZHQHKAzP4VRDVoB0vlaAhHQKZD24vvjOt1ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 310,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e82a35a0f592466d91708a1601d5104ec498090f6cc494c7a47e47e6f8643937
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5eff52a6543a1696685c5c95b6fc4e24fc11218a36cd344f29c2086e4d3a13e9
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.5.0+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.4
|
7 |
+
- Cloudpickle: 3.1.0
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (161 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 253.83182929999998, "std_reward": 39.801542362430105, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-11-02T21:04:29.665873"}
|