--- license: apache-2.0 tags: - moe - merge - mergekit - lazymergekit - OpenPipe/mistral-ft-optimized-1227 - openchat/openchat-3.5-1210 - HuggingFaceH4/zephyr-7b-beta - meta-math/MetaMath-Mistral-7B --- # OpenMistral-MoE OpenMistral-MoE is a Mixure of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [OpenPipe/mistral-ft-optimized-1227](https://huggingface.co/OpenPipe/mistral-ft-optimized-1227) * [openchat/openchat-3.5-1210](https://huggingface.co/openchat/openchat-3.5-1210) * [HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) * [meta-math/MetaMath-Mistral-7B](https://huggingface.co/meta-math/MetaMath-Mistral-7B) ## 🧩 Configuration ```yaml base_model: mistralai/Mistral-7B-Instruct-v0.2 gate_mode: hidden dtype: bfloat16 merge_method: dare_ties experts: - source_model: OpenPipe/mistral-ft-optimized-1227 positive_prompts: - "chat" - "assistant" - "tell me" - "explain" - source_model: openchat/openchat-3.5-1210 positive_prompts: - "code" - "python" - "javascript" - "programming" - "algorithm" - source_model: HuggingFaceH4/zephyr-7b-beta positive_prompts: - "storywriting" - "write" - "scene" - "story" - "character" - source_model: meta-math/MetaMath-Mistral-7B positive_prompts: - "reason" - "math" - "mathematics" - "solve" - "count" ``` ## 💻 Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "Yash21/OpenMistral-MoE" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```