lilt_test
This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1019
- Escription: {'precision': 0.9878048780487805, 'recall': 0.9759036144578314, 'f1': 0.9818181818181818, 'number': 83}
- Otalprice: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 82}
- Rice: {'precision': 0.7619047619047619, 'recall': 1.0, 'f1': 0.8648648648648648, 'number': 16}
- Roductcode: {'precision': 0.9, 'recall': 0.6923076923076923, 'f1': 0.7826086956521738, 'number': 13}
- Uantity: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 35}
- Uantityunit: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23}
- Overall Precision: 0.9723
- Overall Recall: 0.9762
- Overall F1: 0.9743
- Overall Accuracy: 0.9837
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 10000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Escription | Otalprice | Rice | Roductcode | Uantity | Uantityunit | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.0859 | 22.22 | 200 | 0.1019 | {'precision': 0.9878048780487805, 'recall': 0.9759036144578314, 'f1': 0.9818181818181818, 'number': 83} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 82} | {'precision': 0.7619047619047619, 'recall': 1.0, 'f1': 0.8648648648648648, 'number': 16} | {'precision': 0.9, 'recall': 0.6923076923076923, 'f1': 0.7826086956521738, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 35} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | 0.9723 | 0.9762 | 0.9743 | 0.9837 |
0.0001 | 44.44 | 400 | 0.1082 | {'precision': 0.9878048780487805, 'recall': 0.9759036144578314, 'f1': 0.9818181818181818, 'number': 83} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 82} | {'precision': 0.7619047619047619, 'recall': 1.0, 'f1': 0.8648648648648648, 'number': 16} | {'precision': 0.9, 'recall': 0.6923076923076923, 'f1': 0.7826086956521738, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 35} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | 0.9723 | 0.9762 | 0.9743 | 0.9837 |
0.0001 | 66.67 | 600 | 0.1144 | {'precision': 0.9878048780487805, 'recall': 0.9759036144578314, 'f1': 0.9818181818181818, 'number': 83} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 82} | {'precision': 0.7619047619047619, 'recall': 1.0, 'f1': 0.8648648648648648, 'number': 16} | {'precision': 0.9, 'recall': 0.6923076923076923, 'f1': 0.7826086956521738, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 35} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | 0.9723 | 0.9762 | 0.9743 | 0.9837 |
0.0001 | 88.89 | 800 | 0.1190 | {'precision': 0.9878048780487805, 'recall': 0.9759036144578314, 'f1': 0.9818181818181818, 'number': 83} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 82} | {'precision': 0.7619047619047619, 'recall': 1.0, 'f1': 0.8648648648648648, 'number': 16} | {'precision': 0.9, 'recall': 0.6923076923076923, 'f1': 0.7826086956521738, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 35} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | 0.9723 | 0.9762 | 0.9743 | 0.9837 |
0.0 | 111.11 | 1000 | 0.1249 | {'precision': 0.9878048780487805, 'recall': 0.9759036144578314, 'f1': 0.9818181818181818, 'number': 83} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 82} | {'precision': 0.7619047619047619, 'recall': 1.0, 'f1': 0.8648648648648648, 'number': 16} | {'precision': 0.9, 'recall': 0.6923076923076923, 'f1': 0.7826086956521738, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 35} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | 0.9723 | 0.9762 | 0.9743 | 0.9837 |
0.0 | 133.33 | 1200 | 0.1293 | {'precision': 0.9878048780487805, 'recall': 0.9759036144578314, 'f1': 0.9818181818181818, 'number': 83} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 82} | {'precision': 0.7619047619047619, 'recall': 1.0, 'f1': 0.8648648648648648, 'number': 16} | {'precision': 0.9, 'recall': 0.6923076923076923, 'f1': 0.7826086956521738, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 35} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | 0.9723 | 0.9762 | 0.9743 | 0.9837 |
0.0 | 155.56 | 1400 | 0.1313 | {'precision': 0.9878048780487805, 'recall': 0.9759036144578314, 'f1': 0.9818181818181818, 'number': 83} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 82} | {'precision': 0.7619047619047619, 'recall': 1.0, 'f1': 0.8648648648648648, 'number': 16} | {'precision': 0.9, 'recall': 0.6923076923076923, 'f1': 0.7826086956521738, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 35} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | 0.9723 | 0.9762 | 0.9743 | 0.9837 |
0.0 | 177.78 | 1600 | 0.1337 | {'precision': 0.9878048780487805, 'recall': 0.9759036144578314, 'f1': 0.9818181818181818, 'number': 83} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 82} | {'precision': 0.7619047619047619, 'recall': 1.0, 'f1': 0.8648648648648648, 'number': 16} | {'precision': 0.9, 'recall': 0.6923076923076923, 'f1': 0.7826086956521738, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 35} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | 0.9723 | 0.9762 | 0.9743 | 0.9837 |
0.0 | 200.0 | 1800 | 0.1364 | {'precision': 0.9878048780487805, 'recall': 0.9759036144578314, 'f1': 0.9818181818181818, 'number': 83} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 82} | {'precision': 0.7619047619047619, 'recall': 1.0, 'f1': 0.8648648648648648, 'number': 16} | {'precision': 0.9, 'recall': 0.6923076923076923, 'f1': 0.7826086956521738, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 35} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | 0.9723 | 0.9762 | 0.9743 | 0.9837 |
0.0 | 222.22 | 2000 | 0.1380 | {'precision': 0.9878048780487805, 'recall': 0.9759036144578314, 'f1': 0.9818181818181818, 'number': 83} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 82} | {'precision': 0.7619047619047619, 'recall': 1.0, 'f1': 0.8648648648648648, 'number': 16} | {'precision': 0.9, 'recall': 0.6923076923076923, 'f1': 0.7826086956521738, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 35} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | 0.9723 | 0.9762 | 0.9743 | 0.9837 |
0.0 | 244.44 | 2200 | 0.1406 | {'precision': 0.9878048780487805, 'recall': 0.9759036144578314, 'f1': 0.9818181818181818, 'number': 83} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 82} | {'precision': 0.7619047619047619, 'recall': 1.0, 'f1': 0.8648648648648648, 'number': 16} | {'precision': 0.9, 'recall': 0.6923076923076923, 'f1': 0.7826086956521738, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 35} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | 0.9723 | 0.9762 | 0.9743 | 0.9837 |
0.0 | 266.67 | 2400 | 0.1415 | {'precision': 0.9878048780487805, 'recall': 0.9759036144578314, 'f1': 0.9818181818181818, 'number': 83} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 82} | {'precision': 0.7619047619047619, 'recall': 1.0, 'f1': 0.8648648648648648, 'number': 16} | {'precision': 0.9, 'recall': 0.6923076923076923, 'f1': 0.7826086956521738, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 35} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | 0.9723 | 0.9762 | 0.9743 | 0.9837 |
0.0 | 288.89 | 2600 | 0.1436 | {'precision': 0.9878048780487805, 'recall': 0.9759036144578314, 'f1': 0.9818181818181818, 'number': 83} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 82} | {'precision': 0.7619047619047619, 'recall': 1.0, 'f1': 0.8648648648648648, 'number': 16} | {'precision': 0.9, 'recall': 0.6923076923076923, 'f1': 0.7826086956521738, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 35} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | 0.9723 | 0.9762 | 0.9743 | 0.9837 |
0.0 | 311.11 | 2800 | 0.1463 | {'precision': 0.9878048780487805, 'recall': 0.9759036144578314, 'f1': 0.9818181818181818, 'number': 83} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 82} | {'precision': 0.7619047619047619, 'recall': 1.0, 'f1': 0.8648648648648648, 'number': 16} | {'precision': 0.9, 'recall': 0.6923076923076923, 'f1': 0.7826086956521738, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 35} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | 0.9723 | 0.9762 | 0.9743 | 0.9837 |
0.0 | 333.33 | 3000 | 0.1483 | {'precision': 0.9878048780487805, 'recall': 0.9759036144578314, 'f1': 0.9818181818181818, 'number': 83} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 82} | {'precision': 0.7619047619047619, 'recall': 1.0, 'f1': 0.8648648648648648, 'number': 16} | {'precision': 0.9, 'recall': 0.6923076923076923, 'f1': 0.7826086956521738, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 35} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | 0.9723 | 0.9762 | 0.9743 | 0.9837 |
0.0 | 355.56 | 3200 | 0.1490 | {'precision': 0.9878048780487805, 'recall': 0.9759036144578314, 'f1': 0.9818181818181818, 'number': 83} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 82} | {'precision': 0.7619047619047619, 'recall': 1.0, 'f1': 0.8648648648648648, 'number': 16} | {'precision': 0.9, 'recall': 0.6923076923076923, 'f1': 0.7826086956521738, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 35} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | 0.9723 | 0.9762 | 0.9743 | 0.9837 |
0.0 | 377.78 | 3400 | 0.1498 | {'precision': 0.9878048780487805, 'recall': 0.9759036144578314, 'f1': 0.9818181818181818, 'number': 83} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 82} | {'precision': 0.7619047619047619, 'recall': 1.0, 'f1': 0.8648648648648648, 'number': 16} | {'precision': 0.9, 'recall': 0.6923076923076923, 'f1': 0.7826086956521738, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 35} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | 0.9723 | 0.9762 | 0.9743 | 0.9837 |
0.0 | 400.0 | 3600 | 0.1503 | {'precision': 0.9878048780487805, 'recall': 0.9759036144578314, 'f1': 0.9818181818181818, 'number': 83} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 82} | {'precision': 0.7619047619047619, 'recall': 1.0, 'f1': 0.8648648648648648, 'number': 16} | {'precision': 0.9, 'recall': 0.6923076923076923, 'f1': 0.7826086956521738, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 35} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | 0.9723 | 0.9762 | 0.9743 | 0.9837 |
0.0 | 422.22 | 3800 | 0.1518 | {'precision': 0.9878048780487805, 'recall': 0.9759036144578314, 'f1': 0.9818181818181818, 'number': 83} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 82} | {'precision': 0.7619047619047619, 'recall': 1.0, 'f1': 0.8648648648648648, 'number': 16} | {'precision': 0.9, 'recall': 0.6923076923076923, 'f1': 0.7826086956521738, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 35} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | 0.9723 | 0.9762 | 0.9743 | 0.9837 |
0.0 | 444.44 | 4000 | 0.1534 | {'precision': 0.9878048780487805, 'recall': 0.9759036144578314, 'f1': 0.9818181818181818, 'number': 83} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 82} | {'precision': 0.7619047619047619, 'recall': 1.0, 'f1': 0.8648648648648648, 'number': 16} | {'precision': 0.9, 'recall': 0.6923076923076923, 'f1': 0.7826086956521738, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 35} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | 0.9723 | 0.9762 | 0.9743 | 0.9837 |
0.0 | 466.67 | 4200 | 0.1552 | {'precision': 0.9878048780487805, 'recall': 0.9759036144578314, 'f1': 0.9818181818181818, 'number': 83} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 82} | {'precision': 0.7619047619047619, 'recall': 1.0, 'f1': 0.8648648648648648, 'number': 16} | {'precision': 0.9, 'recall': 0.6923076923076923, 'f1': 0.7826086956521738, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 35} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | 0.9723 | 0.9762 | 0.9743 | 0.9837 |
0.0 | 488.89 | 4400 | 0.1567 | {'precision': 0.9878048780487805, 'recall': 0.9759036144578314, 'f1': 0.9818181818181818, 'number': 83} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 82} | {'precision': 0.7619047619047619, 'recall': 1.0, 'f1': 0.8648648648648648, 'number': 16} | {'precision': 0.9, 'recall': 0.6923076923076923, 'f1': 0.7826086956521738, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 35} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | 0.9723 | 0.9762 | 0.9743 | 0.9837 |
0.0 | 511.11 | 4600 | 0.1580 | {'precision': 0.9878048780487805, 'recall': 0.9759036144578314, 'f1': 0.9818181818181818, 'number': 83} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 82} | {'precision': 0.7619047619047619, 'recall': 1.0, 'f1': 0.8648648648648648, 'number': 16} | {'precision': 0.9, 'recall': 0.6923076923076923, 'f1': 0.7826086956521738, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 35} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | 0.9723 | 0.9762 | 0.9743 | 0.9837 |
0.0 | 533.33 | 4800 | 0.1612 | {'precision': 0.9878048780487805, 'recall': 0.9759036144578314, 'f1': 0.9818181818181818, 'number': 83} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 82} | {'precision': 0.7619047619047619, 'recall': 1.0, 'f1': 0.8648648648648648, 'number': 16} | {'precision': 0.9, 'recall': 0.6923076923076923, 'f1': 0.7826086956521738, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 35} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | 0.9723 | 0.9762 | 0.9743 | 0.9837 |
0.0 | 555.56 | 5000 | 0.1635 | {'precision': 0.9878048780487805, 'recall': 0.9759036144578314, 'f1': 0.9818181818181818, 'number': 83} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 82} | {'precision': 0.7619047619047619, 'recall': 1.0, 'f1': 0.8648648648648648, 'number': 16} | {'precision': 0.9, 'recall': 0.6923076923076923, 'f1': 0.7826086956521738, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 35} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | 0.9723 | 0.9762 | 0.9743 | 0.9837 |
0.0 | 577.78 | 5200 | 0.1651 | {'precision': 0.9878048780487805, 'recall': 0.9759036144578314, 'f1': 0.9818181818181818, 'number': 83} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 82} | {'precision': 0.7619047619047619, 'recall': 1.0, 'f1': 0.8648648648648648, 'number': 16} | {'precision': 0.9, 'recall': 0.6923076923076923, 'f1': 0.7826086956521738, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 35} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | 0.9723 | 0.9762 | 0.9743 | 0.9837 |
0.0 | 600.0 | 5400 | 0.1665 | {'precision': 0.9878048780487805, 'recall': 0.9759036144578314, 'f1': 0.9818181818181818, 'number': 83} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 82} | {'precision': 0.7619047619047619, 'recall': 1.0, 'f1': 0.8648648648648648, 'number': 16} | {'precision': 0.9, 'recall': 0.6923076923076923, 'f1': 0.7826086956521738, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 35} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | 0.9723 | 0.9762 | 0.9743 | 0.9837 |
0.0 | 622.22 | 5600 | 0.1679 | {'precision': 0.9878048780487805, 'recall': 0.9759036144578314, 'f1': 0.9818181818181818, 'number': 83} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 82} | {'precision': 0.7619047619047619, 'recall': 1.0, 'f1': 0.8648648648648648, 'number': 16} | {'precision': 0.9, 'recall': 0.6923076923076923, 'f1': 0.7826086956521738, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 35} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | 0.9723 | 0.9762 | 0.9743 | 0.9837 |
0.0 | 644.44 | 5800 | 0.1691 | {'precision': 0.9878048780487805, 'recall': 0.9759036144578314, 'f1': 0.9818181818181818, 'number': 83} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 82} | {'precision': 0.7619047619047619, 'recall': 1.0, 'f1': 0.8648648648648648, 'number': 16} | {'precision': 0.9, 'recall': 0.6923076923076923, 'f1': 0.7826086956521738, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 35} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | 0.9723 | 0.9762 | 0.9743 | 0.9837 |
0.0 | 666.67 | 6000 | 0.1703 | {'precision': 0.9878048780487805, 'recall': 0.9759036144578314, 'f1': 0.9818181818181818, 'number': 83} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 82} | {'precision': 0.7619047619047619, 'recall': 1.0, 'f1': 0.8648648648648648, 'number': 16} | {'precision': 0.9, 'recall': 0.6923076923076923, 'f1': 0.7826086956521738, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 35} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | 0.9723 | 0.9762 | 0.9743 | 0.9837 |
0.0 | 688.89 | 6200 | 0.1714 | {'precision': 0.9878048780487805, 'recall': 0.9759036144578314, 'f1': 0.9818181818181818, 'number': 83} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 82} | {'precision': 0.7619047619047619, 'recall': 1.0, 'f1': 0.8648648648648648, 'number': 16} | {'precision': 0.9, 'recall': 0.6923076923076923, 'f1': 0.7826086956521738, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 35} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | 0.9723 | 0.9762 | 0.9743 | 0.9837 |
0.0 | 711.11 | 6400 | 0.1726 | {'precision': 0.9878048780487805, 'recall': 0.9759036144578314, 'f1': 0.9818181818181818, 'number': 83} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 82} | {'precision': 0.7619047619047619, 'recall': 1.0, 'f1': 0.8648648648648648, 'number': 16} | {'precision': 0.9, 'recall': 0.6923076923076923, 'f1': 0.7826086956521738, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 35} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | 0.9723 | 0.9762 | 0.9743 | 0.9837 |
0.0 | 733.33 | 6600 | 0.1723 | {'precision': 0.9878048780487805, 'recall': 0.9759036144578314, 'f1': 0.9818181818181818, 'number': 83} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 82} | {'precision': 0.7619047619047619, 'recall': 1.0, 'f1': 0.8648648648648648, 'number': 16} | {'precision': 0.9, 'recall': 0.6923076923076923, 'f1': 0.7826086956521738, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 35} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | 0.9723 | 0.9762 | 0.9743 | 0.9837 |
0.0 | 755.56 | 6800 | 0.1728 | {'precision': 0.9878048780487805, 'recall': 0.9759036144578314, 'f1': 0.9818181818181818, 'number': 83} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 82} | {'precision': 0.7619047619047619, 'recall': 1.0, 'f1': 0.8648648648648648, 'number': 16} | {'precision': 0.9, 'recall': 0.6923076923076923, 'f1': 0.7826086956521738, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 35} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | 0.9723 | 0.9762 | 0.9743 | 0.9837 |
0.0 | 777.78 | 7000 | 0.1741 | {'precision': 0.9878048780487805, 'recall': 0.9759036144578314, 'f1': 0.9818181818181818, 'number': 83} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 82} | {'precision': 0.7619047619047619, 'recall': 1.0, 'f1': 0.8648648648648648, 'number': 16} | {'precision': 0.9, 'recall': 0.6923076923076923, 'f1': 0.7826086956521738, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 35} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | 0.9723 | 0.9762 | 0.9743 | 0.9837 |
0.0 | 800.0 | 7200 | 0.1753 | {'precision': 0.9878048780487805, 'recall': 0.9759036144578314, 'f1': 0.9818181818181818, 'number': 83} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 82} | {'precision': 0.7619047619047619, 'recall': 1.0, 'f1': 0.8648648648648648, 'number': 16} | {'precision': 0.9, 'recall': 0.6923076923076923, 'f1': 0.7826086956521738, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 35} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | 0.9723 | 0.9762 | 0.9743 | 0.9837 |
0.0 | 822.22 | 7400 | 0.1767 | {'precision': 0.9878048780487805, 'recall': 0.9759036144578314, 'f1': 0.9818181818181818, 'number': 83} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 82} | {'precision': 0.7619047619047619, 'recall': 1.0, 'f1': 0.8648648648648648, 'number': 16} | {'precision': 0.9, 'recall': 0.6923076923076923, 'f1': 0.7826086956521738, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 35} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | 0.9723 | 0.9762 | 0.9743 | 0.9837 |
0.0 | 844.44 | 7600 | 0.1777 | {'precision': 0.9878048780487805, 'recall': 0.9759036144578314, 'f1': 0.9818181818181818, 'number': 83} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 82} | {'precision': 0.7619047619047619, 'recall': 1.0, 'f1': 0.8648648648648648, 'number': 16} | {'precision': 0.9, 'recall': 0.6923076923076923, 'f1': 0.7826086956521738, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 35} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | 0.9723 | 0.9762 | 0.9743 | 0.9837 |
0.0 | 866.67 | 7800 | 0.1783 | {'precision': 0.9878048780487805, 'recall': 0.9759036144578314, 'f1': 0.9818181818181818, 'number': 83} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 82} | {'precision': 0.7619047619047619, 'recall': 1.0, 'f1': 0.8648648648648648, 'number': 16} | {'precision': 0.9, 'recall': 0.6923076923076923, 'f1': 0.7826086956521738, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 35} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | 0.9723 | 0.9762 | 0.9743 | 0.9837 |
0.0 | 888.89 | 8000 | 0.1797 | {'precision': 0.9878048780487805, 'recall': 0.9759036144578314, 'f1': 0.9818181818181818, 'number': 83} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 82} | {'precision': 0.7619047619047619, 'recall': 1.0, 'f1': 0.8648648648648648, 'number': 16} | {'precision': 0.9, 'recall': 0.6923076923076923, 'f1': 0.7826086956521738, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 35} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | 0.9723 | 0.9762 | 0.9743 | 0.9837 |
0.0 | 911.11 | 8200 | 0.1801 | {'precision': 0.9878048780487805, 'recall': 0.9759036144578314, 'f1': 0.9818181818181818, 'number': 83} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 82} | {'precision': 0.7619047619047619, 'recall': 1.0, 'f1': 0.8648648648648648, 'number': 16} | {'precision': 0.9, 'recall': 0.6923076923076923, 'f1': 0.7826086956521738, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 35} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | 0.9723 | 0.9762 | 0.9743 | 0.9837 |
0.0 | 933.33 | 8400 | 0.1804 | {'precision': 0.9878048780487805, 'recall': 0.9759036144578314, 'f1': 0.9818181818181818, 'number': 83} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 82} | {'precision': 0.7619047619047619, 'recall': 1.0, 'f1': 0.8648648648648648, 'number': 16} | {'precision': 0.9, 'recall': 0.6923076923076923, 'f1': 0.7826086956521738, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 35} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | 0.9723 | 0.9762 | 0.9743 | 0.9837 |
0.0 | 955.56 | 8600 | 0.1809 | {'precision': 0.9878048780487805, 'recall': 0.9759036144578314, 'f1': 0.9818181818181818, 'number': 83} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 82} | {'precision': 0.7619047619047619, 'recall': 1.0, 'f1': 0.8648648648648648, 'number': 16} | {'precision': 0.9, 'recall': 0.6923076923076923, 'f1': 0.7826086956521738, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 35} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | 0.9723 | 0.9762 | 0.9743 | 0.9837 |
0.0 | 977.78 | 8800 | 0.1816 | {'precision': 0.9878048780487805, 'recall': 0.9759036144578314, 'f1': 0.9818181818181818, 'number': 83} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 82} | {'precision': 0.7619047619047619, 'recall': 1.0, 'f1': 0.8648648648648648, 'number': 16} | {'precision': 0.9, 'recall': 0.6923076923076923, 'f1': 0.7826086956521738, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 35} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | 0.9723 | 0.9762 | 0.9743 | 0.9837 |
0.0 | 1000.0 | 9000 | 0.1825 | {'precision': 0.9878048780487805, 'recall': 0.9759036144578314, 'f1': 0.9818181818181818, 'number': 83} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 82} | {'precision': 0.7619047619047619, 'recall': 1.0, 'f1': 0.8648648648648648, 'number': 16} | {'precision': 0.9, 'recall': 0.6923076923076923, 'f1': 0.7826086956521738, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 35} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | 0.9723 | 0.9762 | 0.9743 | 0.9837 |
0.0 | 1022.22 | 9200 | 0.1826 | {'precision': 0.9878048780487805, 'recall': 0.9759036144578314, 'f1': 0.9818181818181818, 'number': 83} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 82} | {'precision': 0.7619047619047619, 'recall': 1.0, 'f1': 0.8648648648648648, 'number': 16} | {'precision': 0.9, 'recall': 0.6923076923076923, 'f1': 0.7826086956521738, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 35} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | 0.9723 | 0.9762 | 0.9743 | 0.9837 |
0.0 | 1044.44 | 9400 | 0.1835 | {'precision': 0.9878048780487805, 'recall': 0.9759036144578314, 'f1': 0.9818181818181818, 'number': 83} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 82} | {'precision': 0.7619047619047619, 'recall': 1.0, 'f1': 0.8648648648648648, 'number': 16} | {'precision': 0.9, 'recall': 0.6923076923076923, 'f1': 0.7826086956521738, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 35} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | 0.9723 | 0.9762 | 0.9743 | 0.9837 |
0.0 | 1066.67 | 9600 | 0.1836 | {'precision': 0.9878048780487805, 'recall': 0.9759036144578314, 'f1': 0.9818181818181818, 'number': 83} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 82} | {'precision': 0.7619047619047619, 'recall': 1.0, 'f1': 0.8648648648648648, 'number': 16} | {'precision': 0.9, 'recall': 0.6923076923076923, 'f1': 0.7826086956521738, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 35} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | 0.9723 | 0.9762 | 0.9743 | 0.9837 |
0.0 | 1088.89 | 9800 | 0.1841 | {'precision': 0.9878048780487805, 'recall': 0.9759036144578314, 'f1': 0.9818181818181818, 'number': 83} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 82} | {'precision': 0.7619047619047619, 'recall': 1.0, 'f1': 0.8648648648648648, 'number': 16} | {'precision': 0.9, 'recall': 0.6923076923076923, 'f1': 0.7826086956521738, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 35} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | 0.9723 | 0.9762 | 0.9743 | 0.9837 |
0.0 | 1111.11 | 10000 | 0.1839 | {'precision': 0.9878048780487805, 'recall': 0.9759036144578314, 'f1': 0.9818181818181818, 'number': 83} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 82} | {'precision': 0.7619047619047619, 'recall': 1.0, 'f1': 0.8648648648648648, 'number': 16} | {'precision': 0.9, 'recall': 0.6923076923076923, 'f1': 0.7826086956521738, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 35} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 23} | 0.9723 | 0.9762 | 0.9743 | 0.9837 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.0.1+cu118
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 9
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Yazawa/lilt_test
Base model
SCUT-DLVCLab/lilt-roberta-en-base