import os import glob import sys import argparse import logging import json import subprocess import librosa import numpy as np import torchaudio from scipy.io.wavfile import read import torch import torchvision from torch.nn import functional as F from commons import sequence_mask from hubert import hubert_model MATPLOTLIB_FLAG = False logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) logger = logging f0_bin = 256 f0_max = 1100.0 f0_min = 50.0 f0_mel_min = 1127 * np.log(1 + f0_min / 700) f0_mel_max = 1127 * np.log(1 + f0_max / 700) def f0_to_coarse(f0): is_torch = isinstance(f0, torch.Tensor) f0_mel = 1127 * (1 + f0 / 700).log() if is_torch else 1127 * np.log(1 + f0 / 700) f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * (f0_bin - 2) / (f0_mel_max - f0_mel_min) + 1 f0_mel[f0_mel <= 1] = 1 f0_mel[f0_mel > f0_bin - 1] = f0_bin - 1 f0_coarse = (f0_mel + 0.5).long() if is_torch else np.rint(f0_mel).astype(np.int) assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, (f0_coarse.max(), f0_coarse.min()) return f0_coarse def get_hubert_model(rank=None): hubert_soft = hubert_model.hubert_soft("hubert/hubert-soft-0d54a1f4.pt") if rank is not None: hubert_soft = hubert_soft.cuda(rank) return hubert_soft def get_hubert_content(hmodel, y=None, path=None): if path is not None: source, sr = torchaudio.load(path) source = torchaudio.functional.resample(source, sr, 16000) if len(source.shape) == 2 and source.shape[1] >= 2: source = torch.mean(source, dim=0).unsqueeze(0) else: source = y source = source.unsqueeze(0) with torch.inference_mode(): units = hmodel.units(source) return units.transpose(1,2) def get_content(cmodel, y): with torch.no_grad(): c = cmodel.extract_features(y.squeeze(1))[0] c = c.transpose(1, 2) return c def transform(mel, height): # 68-92 #r = np.random.random() #rate = r * 0.3 + 0.85 # 0.85-1.15 #height = int(mel.size(-2) * rate) tgt = torchvision.transforms.functional.resize(mel, (height, mel.size(-1))) if height >= mel.size(-2): return tgt[:, :mel.size(-2), :] else: silence = tgt[:,-1:,:].repeat(1,mel.size(-2)-height,1) silence += torch.randn_like(silence) / 10 return torch.cat((tgt, silence), 1) def stretch(mel, width): # 0.5-2 return torchvision.transforms.functional.resize(mel, (mel.size(-2), width)) def load_checkpoint(checkpoint_path, model, optimizer=None): assert os.path.isfile(checkpoint_path) checkpoint_dict = torch.load(checkpoint_path, map_location='cpu') iteration = checkpoint_dict['iteration'] learning_rate = checkpoint_dict['learning_rate'] if iteration is None: iteration = 1 if learning_rate is None: learning_rate = 0.0002 if optimizer is not None and checkpoint_dict['optimizer'] is not None: optimizer.load_state_dict(checkpoint_dict['optimizer']) saved_state_dict = checkpoint_dict['model'] if hasattr(model, 'module'): state_dict = model.module.state_dict() else: state_dict = model.state_dict() new_state_dict= {} for k, v in state_dict.items(): try: new_state_dict[k] = saved_state_dict[k] except: logger.info("%s is not in the checkpoint" % k) new_state_dict[k] = v if hasattr(model, 'module'): model.module.load_state_dict(new_state_dict) else: model.load_state_dict(new_state_dict) logger.info("Loaded checkpoint '{}' (iteration {})" .format( checkpoint_path, iteration)) return model, optimizer, learning_rate, iteration def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path): # ckptname = checkpoint_path.split(os.sep)[-1] # newest_step = int(ckptname.split(".")[0].split("_")[1]) # val_steps = 2000 # last_ckptname = checkpoint_path.replace(str(newest_step), str(newest_step - val_steps*3)) # if newest_step >= val_steps*3: # os.system(f"rm {last_ckptname}") logger.info("Saving model and optimizer state at iteration {} to {}".format( iteration, checkpoint_path)) if hasattr(model, 'module'): state_dict = model.module.state_dict() else: state_dict = model.state_dict() torch.save({'model': state_dict, 'iteration': iteration, 'optimizer': optimizer.state_dict(), 'learning_rate': learning_rate}, checkpoint_path) def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050): for k, v in scalars.items(): writer.add_scalar(k, v, global_step) for k, v in histograms.items(): writer.add_histogram(k, v, global_step) for k, v in images.items(): writer.add_image(k, v, global_step, dataformats='HWC') for k, v in audios.items(): writer.add_audio(k, v, global_step, audio_sampling_rate) def latest_checkpoint_path(dir_path, regex="G_*.pth"): f_list = glob.glob(os.path.join(dir_path, regex)) f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f)))) x = f_list[-1] print(x) return x def plot_spectrogram_to_numpy(spectrogram): global MATPLOTLIB_FLAG if not MATPLOTLIB_FLAG: import matplotlib matplotlib.use("Agg") MATPLOTLIB_FLAG = True mpl_logger = logging.getLogger('matplotlib') mpl_logger.setLevel(logging.WARNING) import matplotlib.pylab as plt import numpy as np fig, ax = plt.subplots(figsize=(10,2)) im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation='none') plt.colorbar(im, ax=ax) plt.xlabel("Frames") plt.ylabel("Channels") plt.tight_layout() fig.canvas.draw() data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='') data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) plt.close() return data def plot_alignment_to_numpy(alignment, info=None): global MATPLOTLIB_FLAG if not MATPLOTLIB_FLAG: import matplotlib matplotlib.use("Agg") MATPLOTLIB_FLAG = True mpl_logger = logging.getLogger('matplotlib') mpl_logger.setLevel(logging.WARNING) import matplotlib.pylab as plt import numpy as np fig, ax = plt.subplots(figsize=(6, 4)) im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower', interpolation='none') fig.colorbar(im, ax=ax) xlabel = 'Decoder timestep' if info is not None: xlabel += '\n\n' + info plt.xlabel(xlabel) plt.ylabel('Encoder timestep') plt.tight_layout() fig.canvas.draw() data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='') data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) plt.close() return data def load_wav_to_torch(full_path): sampling_rate, data = read(full_path) return torch.FloatTensor(data.astype(np.float32)), sampling_rate def load_filepaths_and_text(filename, split="|"): with open(filename, encoding='utf-8') as f: filepaths_and_text = [line.strip().split(split) for line in f] return filepaths_and_text def get_hparams(init=True): parser = argparse.ArgumentParser() parser.add_argument('-c', '--config', type=str, default="./configs/base.json", help='JSON file for configuration') parser.add_argument('-m', '--model', type=str, required=True, help='Model name') args = parser.parse_args() model_dir = os.path.join("./logs", args.model) if not os.path.exists(model_dir): os.makedirs(model_dir) config_path = args.config config_save_path = os.path.join(model_dir, "config.json") if init: with open(config_path, "r") as f: data = f.read() with open(config_save_path, "w") as f: f.write(data) else: with open(config_save_path, "r") as f: data = f.read() config = json.loads(data) hparams = HParams(**config) hparams.model_dir = model_dir return hparams def get_hparams_from_dir(model_dir): config_save_path = os.path.join(model_dir, "config.json") with open(config_save_path, "r") as f: data = f.read() config = json.loads(data) hparams =HParams(**config) hparams.model_dir = model_dir return hparams def get_hparams_from_file(config_path): with open(config_path, "r") as f: data = f.read() config = json.loads(data) hparams =HParams(**config) return hparams def check_git_hash(model_dir): source_dir = os.path.dirname(os.path.realpath(__file__)) if not os.path.exists(os.path.join(source_dir, ".git")): logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format( source_dir )) return cur_hash = subprocess.getoutput("git rev-parse HEAD") path = os.path.join(model_dir, "githash") if os.path.exists(path): saved_hash = open(path).read() if saved_hash != cur_hash: logger.warn("git hash values are different. {}(saved) != {}(current)".format( saved_hash[:8], cur_hash[:8])) else: open(path, "w").write(cur_hash) def get_logger(model_dir, filename="train.log"): global logger logger = logging.getLogger(os.path.basename(model_dir)) logger.setLevel(logging.DEBUG) formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s") if not os.path.exists(model_dir): os.makedirs(model_dir) h = logging.FileHandler(os.path.join(model_dir, filename)) h.setLevel(logging.DEBUG) h.setFormatter(formatter) logger.addHandler(h) return logger class HParams(): def __init__(self, **kwargs): for k, v in kwargs.items(): if type(v) == dict: v = HParams(**v) self[k] = v def keys(self): return self.__dict__.keys() def items(self): return self.__dict__.items() def values(self): return self.__dict__.values() def __len__(self): return len(self.__dict__) def __getitem__(self, key): return getattr(self, key) def __setitem__(self, key, value): return setattr(self, key, value) def __contains__(self, key): return key in self.__dict__ def __repr__(self): return self.__dict__.__repr__()