--- license: apache-2.0 library_name: peft tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy base_model: distilbert-base-uncased model-index: - name: distilbert-base-uncased-tokenclassification_lora results: [] --- # distilbert-base-uncased-tokenclassification_lora This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4685 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 - Accuracy: 0.9205 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | No log | 1.0 | 213 | 0.7099 | 0.0 | 0.0 | 0.0 | 0.9205 | | No log | 2.0 | 426 | 0.4685 | 0.0 | 0.0 | 0.0 | 0.9205 | ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.0.0+cu117 - Datasets 2.16.1 - Tokenizers 0.15.0