File size: 3,020 Bytes
6fd190b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
项目地址:[LLMPruner:大语言模型裁剪工具](https://github.com/yangjianxin1/LLMPruner)

LLMPruner是一个大语言模型裁剪工具,通过对大语言模型的冗余词表进行裁剪,减少模型参数量,降低显存占用,提升训练速度,并且能够保留预训练中学习到的知识。

本项目对Bloom进行词表裁剪,保留中文token和常用的英文token,词表由250880将至46145,缩减为原来的18.39%。裁剪得到的Bloom模型如下表:

| 裁剪模型                                                                        | 原模型                                        | 参数量比例  | 
|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------|
| [YeungNLP/bloom-396m-zh](https://huggingface.co/YeungNLP/bloom-396m-zh) | [bigscience/bloom-560m](https://huggingface.co/bigscience/bloom-560m)       | 70.96% |  
| [YeungNLP/bloom-820m-zh](https://huggingface.co/YeungNLP/bloom-820m-zh) | [bigscience/bloom-1b1](https://huggingface.co/bigscience/bloom-1b1)         | 77.13% |     
| [YeungNLP/bloom-1b4-zh](https://huggingface.co/YeungNLP/bloom-1b4-zh)   | [bigscience/bloom-1b7](https://huggingface.co/bigscience/bloom-1b7)         | 81.14% |     
| [YeungNLP/bloom-2b6-zh](https://huggingface.co/YeungNLP/bloom-2b6-zh)   | [bigscience/bloom-3b](https://huggingface.co/bigscience/bloom-3b)           | 86.48% |     
| [YeungNLP/bloom-6b4-zh](https://huggingface.co/YeungNLP/bloom-6b4-zh)   | [bigscience/bloom-7b1](https://huggingface.co/bigscience/bloom-7b1)         |  90.81% |         
| [YeungNLP/bloomz-396m-zh](https://huggingface.co/YeungNLP/bloomz-396m-zh) | [bigscience/bloomz-560m](https://huggingface.co/bigscience/bloomz-560m)     | 70.96% |     
| [YeungNLP/bloomz-820m-zh](https://huggingface.co/YeungNLP/bloomz-820m-zh) | [bigscience/bloomz-1b1](https://huggingface.co/bigscience/bloomz-1b1)       | 77.13% |     
| [YeungNLP/bloomz-1b4-zh](https://huggingface.co/YeungNLP/bloomz-1b4-zh) | [bigscience/bloomz-1b7](https://huggingface.co/bigscience/bloomz-1b7)       | 81.14% |     
| [YeungNLP/bloomz-2b6-zh](https://huggingface.co/YeungNLP/bloomz-2b6-zh) | [bigscience/bloomz-3b](https://huggingface.co/bigscience/bloomz-3b)         | 86.48% |     
| [YeungNLP/bloomz-6b4-zh](https://huggingface.co/YeungNLP/bloomz-6b4-zh) | [bigscience/bloomz-7b1](https://huggingface.co/bigscience/bloomz-7b1)       | 90.81% |
| [YeungNLP/bloomz-6b4-mt-zh](https://huggingface.co/YeungNLP/bloomz-6b4-mt-zh) | [bigscience/bloomz-7b1-mt](https://huggingface.co/bigscience/bloomz-7b1-mt) | 90.81% |   


使用方法:
```python
from transformers import BloomTokenizerFast, BloomForCausalLM

tokenizer = BloomTokenizerFast.from_pretrained('YeungNLP/bloom-1b4-zh')
model = BloomForCausalLM.from_pretrained('YeungNLP/bloom-1b4-zh')
print(tokenizer.batch_decode(model.generate(tokenizer.encode('长风破浪会有时', return_tensors='pt'))))
```