File size: 7,048 Bytes
a654cba
0366d26
457d68c
cda427c
457d68c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a654cba
 
cda427c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05eb5fd
cda427c
 
 
 
 
 
 
 
457d68c
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
---
license: apache-2.0
library_name: transformers
basemodel: google/gemma-7b
model-index:
- name: firefly-gemma-7b
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 62.12
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=YeungNLP/firefly-gemma-7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 79.77
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=YeungNLP/firefly-gemma-7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 61.57
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=YeungNLP/firefly-gemma-7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 49.41
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=YeungNLP/firefly-gemma-7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 75.45
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=YeungNLP/firefly-gemma-7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 49.28
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=YeungNLP/firefly-gemma-7b
      name: Open LLM Leaderboard
---

## Model Card for Firefly-Gemma

[firefly-gemma-7b](https://huggingface.co/YeungNLP/firefly-gemma-7b) is trained based on [gemma-7b](https://huggingface.co/google/gemma-7b) to act as a helpful and harmless AI assistant. 
We use [Firefly](https://github.com/yangjianxin1/Firefly) to train the model on **a single V100 GPU** with QLoRA.

Our model outperforms the official [gemma-7b-it](https://huggingface.co/google/gemma-7b-it), [zephyr-7b-gemma-v0.1](https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-v0.1), [Qwen1.5-7B-Chat](https://huggingface.co/Qwen/Qwen1.5-7B-Chat) and [Zephyr-7B-Beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) on [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).

<img src="open_llm_leaderboard.png" width="800">

We advise you to install transformers>=4.38.1.

## Performance
We evaluate our models on [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard), they achieve good performance.

| Model                          | Average | ARC    | HellaSwag | MMLU   | TruthfulQA | Winogrande | GSM8K  |
|--------------------------------|--------|--------|-----------|--------|------------|-----------|--------|
| **firefly-gemma-7b**           | 62.93  | 	62.12 | 79.77     | 61.57  | 49.41      | 75.45     | 49.28  |
| zephyr-7b-gemma-v0.1           |62.41|58.45|83.48|60.68|52.07|	74.19| 45.56|
| firefly-qwen1.5-en-7b-dpo-v0.1 | 62.36  | 54.35  | 76.04     | 61.21  | 56.4       | 72.06     | 54.13  |
| zephyr-7b-beta                 | 61.95  | 62.03  | 84.36     | 61.07  | 	57.45     | 77.74     | 	29.04 |
| firefly-qwen1.5-en-7b          | 61.44  | 53.41  | 	75.51          | 61.67       |51.96          |70.72        | 55.34       |
| vicuna-13b-v1.5                | 55.41  | 57.08  | 	81.24    | 56.67  | 51.51      | 	74.66    | 11.3   |
| Xwin-LM-13B-V0.1               | 55.29  | 	62.54 | 82.8      | 56.53  | 45.96      | 74.27     | 9.63   |
| Qwen1.5-7B-Chat                | 55.15  | 	55.89 | 78.56     | 61.65  | 53.54      | 	67.72    | 13.57  |
| gemma-7b-it                    | 53.56  | 51.45  | 71.96     | 53.52  | 47.29      | 	67.96    | 	29.19 |



## Usage
The chat template of our chat models is similar as Official gemma-7b-it:
```text
<bos><start_of_turn>user
hello, who are you?<end_of_turn>
<start_of_turn>model
I am a AI program developed by Firefly<eos>
```

You can use script to inference in [Firefly](https://github.com/yangjianxin1/Firefly/blob/master/script/chat/chat.py).

You can also use the following code:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

model_name_or_path = "YeungNLP/firefly-gemma-7b"
model = AutoModelForCausalLM.from_pretrained(
    model_name_or_path,
    trust_remote_code=True,
    low_cpu_mem_usage=True,
    torch_dtype=torch.float16,
    device_map='auto',
)
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)

prompt = "Compose an engaging travel blog post about a recent trip to Hawaii, highlighting cultural experiences and must-see attractions. "
text = f"""
<bos><start_of_turn>user
{prompt}<end_of_turn>
<start_of_turn>model
""".strip()
model_inputs = tokenizer([text], return_tensors="pt").to('cuda')

generated_ids = model.generate(
    model_inputs.input_ids,
    max_new_tokens=1500,
    top_p = 0.9,
    temperature = 0.35,
    repetition_penalty = 1.0,
    eos_token_id=tokenizer.encode('<eos>', add_special_tokens=False)
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_YeungNLP__firefly-gemma-7b)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |62.93|
|AI2 Reasoning Challenge (25-Shot)|62.12|
|HellaSwag (10-Shot)              |79.77|
|MMLU (5-Shot)                    |61.57|
|TruthfulQA (0-shot)              |49.41|
|Winogrande (5-shot)              |75.45|
|GSM8k (5-shot)                   |49.28|